IIT JEE | MEDICAL | FOUNDATION

MATHEMATICS

CLASS-X

SOLUTIONS

SECTION-A

1.(C) $\operatorname{HCF}(26,169)=13$

$$
\therefore \quad \operatorname{LCM}(26,169)=\frac{26 \times 169}{13}=338
$$

2.(B) Let $p(x)=x^{2}-3 x-m(m+3)$
$\Rightarrow \quad p(x)=x^{2}-(m+3) x+m x-m(m+3)$

$$
=x\{x-(m+3)\}+m\{x-(m+3)\}
$$

For zeros of $p(x)=(x+m)\{(x-(m+3)\}=0$
$\therefore \quad$ Its zeros are $-m, m+3$
3.(B) Given quadratic equation, $2 x^{2}+k x+2=0$
$\therefore \quad$ Its discriminant, $D=(K)^{2}-4 \times 2 \times 2$
$\Rightarrow \quad D=K^{2}-16$
For roots to be real and equal
$D=0 \Rightarrow K^{2}-16=0 \Rightarrow K^{2}=16$
$\Rightarrow \quad K= \pm 4$
4.(D) Given lines are $c x-y=2$ and $6 x-2 y=3$.

For infinitely many solutions, we have
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow \frac{c}{6}=\frac{-1}{-2}=\frac{-2}{-3} \Rightarrow \frac{c}{6}=\frac{2}{3}$
$\Rightarrow \quad c=\frac{6}{2}$ and $c=4 \Rightarrow c=3$ and $c=4$
Since, c has different values, hence, for no value of c, the pair of equations will have infinitely many solutions.
5.(A) We have,
$\frac{m}{3}=\frac{-6+(-2)}{2} \Rightarrow m=\frac{-8}{2} \times 3 \Rightarrow m=-12$
6.(A) In $\triangle A O Q$ and $\triangle B O P$, we have

$\angle A O Q=\angle B O P$ (Vertically opposite angle)
$\angle O A Q=\angle O B P$ (Both of 90°)
$\therefore \quad \triangle A O Q: \triangle B O P$ (By AA similarity)
So $\frac{A O}{B O}=\frac{A Q}{P B} \Rightarrow \frac{10}{6}=\frac{A Q}{9} \Rightarrow A Q=\frac{10 \times 9}{6}=15 \mathrm{~cm}$
7.(C) Given $\frac{4-\sin ^{2} 45^{\circ}}{\cot k \tan 60^{\circ}}=3.5$

$$
\begin{aligned}
& \Rightarrow \quad \frac{4-\left(\frac{1}{\sqrt{2}}\right)^{2}}{\cot k \sqrt{3}}=3.5 \Rightarrow \frac{4-\frac{1}{2}}{\sqrt{3} \cot k}=3.5 \\
& \Rightarrow \quad \frac{7}{2 \sqrt{3} \times 3.5}=\cot k \Rightarrow \frac{7}{7 \sqrt{3}}=\cot k \\
& \Rightarrow \quad \frac{1}{\sqrt{3}}=\cot k \Rightarrow \cot 60^{\circ}=\cot k \Rightarrow k=60^{\circ}
\end{aligned}
$$

8.(B) Given: $\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)$

$$
\begin{aligned}
& =\left(\sec ^{2} \theta\right)\left(1-\sin ^{2} \theta\right) \\
& =\left(\sec ^{2} \theta\right)\left(\cos ^{2} \theta\right) \\
& =\frac{1}{\cos ^{2} \theta} \times \cos ^{2} \theta=1
\end{aligned}
$$

9.(D) We have,

In $\triangle A B C, D E \| B C$

$$
\begin{aligned}
& \Rightarrow \quad \frac{A D}{D B}=\frac{A E}{E C} \Rightarrow \frac{3}{2}=\frac{2.7}{E C} \\
& \Rightarrow \quad E C=\frac{2.7 \times 2}{3}=1.8 \mathrm{~cm}=1.8 \mathrm{~cm}
\end{aligned}
$$

10.(B) In $\triangle P Q R$ we have
$P R=Q R \Rightarrow \angle Q=\angle P=40^{\circ}$
$\angle R=180^{\circ}-(\angle P+\angle Q)=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)=100^{\circ}$
$\therefore \quad \angle R=100^{\circ}$
We have, $\frac{A B}{P R}=\frac{5}{10}=\frac{1}{2}, \frac{A C}{Q R}=\frac{5}{10}=\frac{1}{2} \Rightarrow \frac{A B}{P R}=\frac{A C}{Q R}=\frac{1}{2}$
Condition for both be triangles to be similar is
$\angle A=\angle R=100^{\circ}$
11.(B) We have,

$$
\begin{aligned}
& (1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta) \\
& =\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right) \\
& =\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)\left(\frac{\sin \theta+\cos \theta+1}{\cos \theta}\right) \\
& =\left(\frac{(\sin \theta+\cos \theta)^{2}-(1)^{2}}{\sin \theta \cos \theta}\right)=\frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \cos \theta-1}{\sin \theta \cos \theta} \\
& =\frac{1+2 \sin \theta \cos \theta 1}{\sin \theta \cos \theta}=\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2
\end{aligned}
$$

12.(A) $\angle A O B=180^{\circ}-50^{\circ}=130^{\circ}$

Let $\angle O A B=\angle O B A=x^{\circ}$ (Angles opposite to equal sides)
Then $x^{\circ}+x^{\circ}+130^{\circ}=180^{\circ}$
$\Rightarrow \quad 2 x^{\circ}=50^{\circ} \Rightarrow x^{\circ}=25^{\circ}$
$\Rightarrow \quad \angle O A B=25^{\circ}$
13.(B) Area of shaded region $=$ area of circle - area of rectangle

Diagonal of rectangle $=\sqrt{12^{2}+5^{2}}=\sqrt{144+25}=13 \mathrm{~cm}$
Radius of circle $=\frac{13}{2} \mathrm{~cm}$
Area of shaded region $=\pi \times\left(\frac{13}{2}\right)^{2}-12 \times 5=\frac{3.14}{100} \times \frac{169}{4}-60$
$=\frac{53060}{400}-60=132.66-60.00=72.66 \mathrm{~cm}^{2}=73 \mathrm{~cm}^{2}$ (approx)
14.(D) First find the circumference of the wheel and then find number of revolution
$=\frac{\text { distance covered }}{\text { circumference of wheel }}$

Circumference of wheel $=2 \pi r$
$=2 \times \frac{22}{7} \times 42=12 \times 22$
Number of revolution $=\frac{79200}{12 \times 22}=300$
15.(B) $\frac{n}{2}=\frac{60}{2}=30$, median class $=160-165$

Modal class $=150-155$
Required sum $=150+165=315$
16.(C) Given: Length of $\operatorname{arc}=20 \mathrm{~cm}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\theta}{360^{\circ}} \times 2 \pi r=20 \\
& \Rightarrow \quad \frac{60^{\circ}}{360^{\circ}} \times 2 \pi r=20 \\
& \Rightarrow \quad \frac{\pi r}{3}=20 \\
& \Rightarrow \quad r\left(\frac{\pi}{3}\right)=20 \\
& \Rightarrow \quad r=\frac{60}{\pi} c m
\end{aligned}
$$

17.(C) Number of required tickets $=6000 \times 0.08=480$
18.(A) In triangle CDE ,

$$
\begin{align*}
& \tan 30^{\circ}=\frac{60-h}{x} \\
& \Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{60-h}{x} \\
& \Rightarrow \quad x=\sqrt{3}(60-h) m \tag{i}
\end{align*}
$$

Again, in triangle CAB ,
$\tan 60^{\circ}=\frac{60}{x}$
$\Rightarrow \quad \sqrt{3}=\frac{60}{x}$
$\Rightarrow \quad x=\frac{60}{\sqrt{3}} m$

From equation (i) and (ii) we get,

$$
\begin{aligned}
& \sqrt{3}(60-h)=\frac{60}{\sqrt{3}} \\
& \Rightarrow \quad 60-h=20 \\
& \Rightarrow \quad h=40 m
\end{aligned}
$$

19.(C) We have
$\operatorname{LCM}(a, b) \times H C F(a, b)=a \times b$
$\mathrm{LCM} \times 5=150$
$\therefore \quad L C M=\frac{150}{5}=30$
$\Rightarrow \quad L C M=30$, i.e., reason is incorrect and assertion is correct.
20.(D) $P Q=10 \Rightarrow P Q^{2}=100 \Rightarrow(10-2)^{2}+(y+3)^{2}=100$
$\Rightarrow \quad(y+3)^{2} \quad \Rightarrow \quad 100-64=36 \Rightarrow y+3= \pm 6$
$\Rightarrow \quad y=-3 \pm 6 \quad \Rightarrow \quad y=3,-9$
So, A is incorrect but R is correct.

SECTION-B

21. Given, rectangle $A B C D$.
\Rightarrow Opposite sides are equal.
Hence, $x+y=30$
$x-y=14$
(i) + (ii) $2 x=44 \Rightarrow x=22$

Substituting in (i), $22+y=30 \Rightarrow y=8$
$\Rightarrow \quad x=22, y=8$
22. We have,

In $\triangle A B C, D E \| A C$
$\therefore \quad \frac{B D}{D A}=\frac{B E}{E C}$
Also, in $\triangle A B P, D C \| A P$
$\therefore \quad \frac{B D}{D A}=\frac{B C}{C P}$
From (i) and (ii), we have
$\frac{B E}{E C}=\frac{B C}{C P}$
23. Given, $\angle Q P R=120^{\circ}$
$\therefore \quad$ Radius is perpendicular to the tangent at the point of contact.
$\therefore \quad \angle O Q P=90^{\circ}$ and
$\angle Q P O=60^{\circ}$ (Tangents drawn to a circle from an external point are equally inclined to the segment,
joining the centre to that point.)
In $\triangle Q P O, \cos 60^{\circ}=\frac{P Q}{P O} \Rightarrow \frac{1}{2}=\frac{P Q}{P Q} \Rightarrow 2 P Q=P O$
24. Let the outer and inner radii of the ring be $R \mathrm{~m}$ and $r \mathrm{~m}$ respectively. Then,
$2 \pi R=396$ and $2 \pi r=352$

$$
\begin{aligned}
& \Rightarrow \quad 2 \times \frac{22}{7} \times R=396 \text { and } 2 \times \frac{22}{7} \times r=352 \\
& \Rightarrow \quad R=396 \times \frac{7}{22} \times \frac{1}{2} \text { and } r=352 \times \frac{7}{22} \times \frac{1}{2} \\
& \Rightarrow \quad R=63 \mathrm{~m} \quad \text { and } \quad r=56 \mathrm{~m}
\end{aligned}
$$

Hence, width of the track $=(R-r)=(63-56)=7 m$

OR

Let r be the radius and 0 be the angle subtended by the arc at the centre of the circle.
$\therefore \quad$ Length of arc $=$ length of piece of wire

$\frac{\theta}{360} \times 2 \pi r=22$
$\Rightarrow \quad \frac{60}{360} \times 2 \pi r=22 \Rightarrow \frac{\pi r}{3}=22$
$\Rightarrow \quad r=\frac{3 \times 22}{\pi}=\frac{3 \times 22}{\frac{22}{7}}=21 \mathrm{~cm}$
$\therefore \quad$ Radius $=21 \mathrm{~cm}$
25. $\sin \theta=\cos \theta$ (Given)

It means value of $\theta=45^{\circ}$
Now, $2 \tan \theta+\cos ^{2} \theta=2 \tan 45^{\circ}+\cos ^{2} 45^{\circ}$

$$
=2 \times 1+\left(\frac{1}{\sqrt{2}}\right)^{2}=2+\frac{1}{2}=\frac{4+1}{2}=\frac{5}{2}\left(Q \tan 45^{\circ}=1, \cos 45^{\circ}=\frac{1}{\sqrt{2}}\right)
$$

OR
$\sin ^{2} A=2 \sin A$
$\Rightarrow \quad \sin ^{2} A-2 \sin A=0 \quad \Rightarrow \quad \sin A(\sin A-2)=0$

```
\(\Rightarrow \quad\) either \(\sin A=0 \quad\) or \(\quad \sin A-2=0\)
\(\Rightarrow \quad A=0^{\circ}\)
\(\therefore \quad\) Value of \(\angle A=0^{\circ}\)
( \(\sin A=2\), which is not possible)
```


SECTION-C

26. Given $\sqrt{2}$ is irrational.

To prove: $5+3 \sqrt{2}$ is irrational.
Proof: Let us assume $5+3 \sqrt{2}$ is rational. So it can be written in the form $\frac{a}{b}$ where $a, b \in Z, b \neq 0$,
$\operatorname{HCF}(a, b)=1$.
$5+3 \sqrt{2}=\frac{a}{b} \Rightarrow 3 \sqrt{2}=\frac{a}{b}-5$
$3 \sqrt{2}=\frac{a-5 b}{b} \Rightarrow \sqrt{2}=\frac{a-5 b}{3 b}$
This shows that $\sqrt{2}$ is rational ($a-5 b$ and $3 b$ are integers). But we know that $\sqrt{2}$ is irrational. This contradicts our assumption that $5+3 \sqrt{2}$ is rational.
$\Rightarrow \quad 5+3 \sqrt{2}$ is irrational, hence proved.
27. It is given that α and β are zeros of the polynomial $2 x^{2}-3 x+1$.
$\therefore \quad \alpha+\beta=\frac{-(-3)}{2}=\frac{3}{2}$ and $\alpha \beta=\frac{1}{2}$
Now, new quadratic polynomial whose zeros are 3α and 3β is given by $x^{2}-$ (sum of zeros) $x+$ product of zeros

$$
\begin{aligned}
& =x^{2}-(3 \alpha+3 \beta) x+3 \alpha \times 3 \beta=x^{2}-3(\alpha+\beta) x+9 \alpha \beta \\
& =x^{2}-(3 \alpha+3 \beta) x+3 \alpha \times 3 \beta=x^{2}-3(\alpha+\beta) x+9 \alpha \beta \\
& =x^{2}-3 \times \frac{3}{2} x+9 \times \frac{1}{2} \\
& =x^{2}-\frac{9}{2} x+\frac{9}{2}=\frac{1}{2}\left(2 x^{2}-9 x+9\right)
\end{aligned}
$$

28. Let the speed of the boat be $x \mathrm{~km} / \mathrm{h}$ and speed of the stream be $y \mathrm{~km} / \mathrm{h}$.
$\therefore \quad$ Speed of boat in upstream $=(x-y) \mathrm{km} / \mathrm{h}$
and speed of boat in downstream $=(x+y) \mathrm{km} / \mathrm{h}$
$\therefore \quad$ According to question,
$\frac{30}{x-y}+\frac{44}{x+y}=10$
And $\frac{40}{x-y}+\frac{55}{x+y}=13$
$(i) \times 4-(i i) \times 3$ gives
$\frac{1}{x+y}(176-165)=1$
$\Rightarrow \quad x+y=11$

Putting the value of $x+y=11$ in equation (i), we have
$\frac{30}{x-y}+\frac{44}{11}=10$
$\Rightarrow \quad \frac{30}{x-y}+4=10 \Rightarrow \frac{30}{x-y}=104=6$
$\Rightarrow \quad x-y=5$
By adding equations (iii) and (iv), we have
$x+y=11$
$x-y=5$
$2 x=16$
$\Rightarrow \quad x=8$
Putting $x=8$ in equation (iii), we have
$8+y=11$
$y=11-8=3 \Rightarrow y=3$
Speed of boat is $8 \mathrm{~km} / \mathrm{h}$ and speed of stream is $3 \mathrm{~km} / \mathrm{h}$.
OR
Let the digits at units and tens places be x and y, respectively.
$\therefore \quad x y=14$
$\Rightarrow \quad y=\frac{14}{x}$
According to the questions:
$10 x+y+45=10 y+x$
$\Rightarrow \quad 9 x-9 y+45=0$
$\Rightarrow \quad x-y+5=0$
From (i) and (ii), we get:
$x-\frac{14}{x}+5=0$
$\Rightarrow \quad x^{2}+5 x-14=0$
$\Rightarrow \quad x^{2}+7 x-2 x-14=0$
$\Rightarrow \quad x(x+7)-2(x+7)=0$
$\Rightarrow \quad x^{2}-7 x+2 x-14=0$
$\Rightarrow \quad(x+7)(x-2)=0$
$\Rightarrow \quad x=-7$ or $x=2$
$\Rightarrow \quad x=-7$ (the digit cannot be negative)
Putting $x=2$ in equation (i), we get:
$y=7$
$\therefore \quad$ Required number $=10 \times 2+7=27$
29. $\sin \theta+\cos \theta=\sqrt{3}$

$$
\begin{array}{ll}
\Rightarrow & (\sin \theta+\cos \theta)^{2}=3 \\
\Rightarrow & \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3 \\
\Rightarrow & 2 \sin \theta \cos \theta=2 \quad\left(Q \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
\Rightarrow & \sin \theta \cdot \cos \theta=1=\sin ^{2} \theta+\cos ^{2} \theta \\
\Rightarrow & 1=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta} \Rightarrow 1=\frac{\sin ^{2} \theta}{\sin \theta \cos \theta}+\frac{\cos ^{2} \theta}{\sin \theta \cos \theta} \\
\Rightarrow & 1=\tan \theta+\cot \theta
\end{array}
$$

Therefore $\tan \theta+\cot \theta=1$
30. Given: A quadrilateral circumscribing a circle, with centre O, such that it touches side $A B, B C, C D, A D$ at P, Q, R and S.
To prove: $A B+C D=B C+D A$

Proof: Length of tangent drawn from external point are equal.
$A P=A S$

- (at A)
$B P=B Q$
- (at B)
$D R=D S$
- (at C)
$C R=C Q$

$$
\begin{equation*}
-(\text { at } D) \tag{111}
\end{equation*}
$$

Adding equation (i), (ii), (iii), (iv)

$$
\begin{aligned}
& A P+B P+D R+C R=A S+D S+B Q+C Q \\
& \Rightarrow \quad A B+C D=A D+B C
\end{aligned}
$$

Hence Proved.

OR

Given: Circle $(O, r) A P$ and $P B$ are tangents drawn to the circle.
To prove : $P A=P B$.

Construction: Join $O A, O B$ and $O P$.
Proof: $O A=O B$
$\angle O A P=\angle O B P=90^{\circ}$
(Right angle)
[Q Radius is perpendicular to tangent at point of contact]
$O P=O P$
(Hypotenuse)
So in $\triangle O A P \cong \triangle O B P$
$\Rightarrow \quad \triangle O A P \cong \triangle O B P \quad$ [By RHS congruency]
$\Rightarrow \quad A P=B P \quad[\mathrm{By} \mathrm{CPCT}]$
Hence proved
31. Total number of outcomes $=36$
(i) Favourable outcomes are $(1,1),(1,2)(1,3)(1,4)(1,5)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)$ $(3,3)(4,1)(4,2)(5,1)$ i.e., 15.
$\therefore \quad P($ sum less than 7$)=\frac{15}{36}$ or $\frac{5}{12}$
(ii) Favourable outcomes are $(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)$ $(3,1)(3,2)(3,3)(3,4)(3,5)(4,1)(4,2)(4,3)(5,1)(5,2)(5,3)(6,1)(6,2)$ i.e., 25.
$\therefore \quad P($ product less than 16$)=\frac{25}{36}$
(iii) Favourable outcomes are $(1,1)(3,3)(5,5)$ i.e., 3 .
$\therefore \quad \mathrm{P}($ doublet of odd number $)=\frac{3}{36}$ or $\frac{1}{12}$

SECTION-D

32. Let, time taken by faster tap to fill the tank be x hours.

Therefore, time taken by slower tap to fill the tank $=(x+3)$ hours
Since the faster tap takes x hours to fill the tank.
$\therefore \quad$ Portion of the tank filled by the faster tap in one hour $=\frac{1}{x}$
Portion of the tank filled by the slower tap in one hour $=\frac{1}{x+3}$
Portion of the tank filled by the two tap together in one hour $=\frac{1}{\frac{40}{13}}=\frac{13}{40}$
According to question,

$$
\begin{array}{lll}
\Rightarrow & \frac{1}{x}+\frac{1}{x+3}=\frac{13}{40} & \Rightarrow \\
\Rightarrow \quad 40(2 x+3)=13 x(x+3) & \Rightarrow & 80 x+120=13 x^{2}+39 x \\
\Rightarrow \quad 13 x^{2}-41 x-120=0 & \Rightarrow & 13 x^{2}-65 x+24 x-120=0 \\
\Rightarrow \quad 13 x(x-5)+24(x-5)=0 & \Rightarrow & (x-5)(13 x+24)=0 \\
& \text { Eithre } x-5=0 & \text { or } \\
\Rightarrow \quad x=5 & \text { or } & x=\frac{13}{40}+24=0 \\
\Rightarrow \quad & x=5 & {[Q x \text { cannot be negative] }}
\end{array}
$$

Hence, time taken by faster tap to fill the tank $=x=5$ hours and time taken by slower tap $=x+3=5+3$ $=8$ hours.

Let the speed of stream be $x \mathrm{~km} / \mathrm{h}$.
$\therefore \quad$ The speed of the boat upstream $=(18-x) \mathrm{km} / \mathrm{h}$
and Speed of the boat downstream $=(18+x) \mathrm{km} / \mathrm{h}$
According to question, $\frac{24}{18-x}-\frac{24}{18+x}=1$
$\Rightarrow \quad 24(18+x)-24(18-x)=324-x^{2}$
$\Rightarrow \quad 48 x=324-x^{2} \quad \Rightarrow \quad x^{2}+48 x-324=0$
$\Rightarrow \quad x^{2}+54 x-6 x-324=0 \quad \Rightarrow \quad x(x+54)-6(x+54)$
$\Rightarrow \quad(x+54)(x-6)=0$
But $x \neq-54, \therefore x=6 \quad$ [Speed can't be negative]
$\therefore \quad$ Speed of the stream $=6 \mathrm{~km} / \mathrm{h}$.
33. In $\triangle B M C$ and $\triangle E M D$, we have
$M C=M D$
($\mathrm{Q} M$ is the mid-point of $C D$)

$\angle C M B=\angle D M E \quad$ (Vertically opposite angles)
and $\angle M B C=\angle M E D$
(Alternate angles)
$\triangle B M C \cong \triangle E M D$
(By $A A S$ criterion of congruence)
$\Rightarrow \quad B C=D E$
(CPCT)
Also, $B C=A D$
($\mathrm{Q} A B C D$ is a parallelogram)
Now, in $\triangle A E L$ and $\triangle C B L$, we have
$\angle A L E=\angle C L B \quad$ (Vertically opposite angles)
$\angle E A L=\angle B C L \quad$ (Alternate angles)
$\therefore \triangle A E L: \triangle C B L \quad$ (By $A A$ similarity)
$\Rightarrow \quad \frac{E L}{B L}=\frac{A E}{C B} \Rightarrow \frac{E L}{B L}=\frac{2 B C}{B C} \quad(\mathrm{Q} A E=A D+D E=B C+B C=2 B C)$
$\Rightarrow \quad \frac{E L}{B L}=2 \Rightarrow E L=2 B L$
34. In the given Fig., $\triangle P Q R$ is a right triangle, where $P Q=3 \mathrm{~cm}, P R=4 \mathrm{~cm}$ and $Q R=5 \mathrm{~cm}$.

Let $O Q=x \Rightarrow O R=5-x$ and $O P=y$

Now in right angled-triangle $P O Q$, we have
$P Q^{2}=O Q^{2}+O P^{2} \quad$ (By Pythagoras Theorem)
$\Rightarrow \quad(3)^{2}=x^{2}+y^{2}+y^{2} \Rightarrow y^{2}=9-x^{2}$
Also from right angled triangle $P O R$, we have
$O P^{2}+O R^{2}=P R^{2}$
$\Rightarrow \quad y^{2}+(5-x)^{2}=(4)^{2}$
$\Rightarrow \quad$ From (i) and (ii), we get
$9-x^{2}=16-(5-x)^{2}$
$\Rightarrow \quad 9-x^{2}=16-\left(25+x^{2}-10 x\right)$
Or $\quad 9-x^{2}=-9-x^{2}+10 x \quad \Rightarrow \quad 10 x=18 \Rightarrow x=\frac{9}{5}$
$\therefore \quad O R=5-x=5-\frac{9}{5}=\frac{16}{5}$
Now putting $x=\frac{9}{5}$ in (i), we get

$$
\begin{aligned}
& y^{2}=9-\left(\frac{9}{5}\right)^{2}=9-\frac{81}{25}=\frac{144}{25} \Rightarrow y=\frac{12}{5} \\
& \therefore \quad O P=y=\frac{12}{5}
\end{aligned}
$$

Now for the cone $P Q M$, radius $O P=\frac{12}{5} \mathrm{~cm}$, height $O Q=\frac{9}{5} \mathrm{~cm}$
Volume $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{12}{5}\right)^{2} \times \frac{9}{5}=\frac{432 \pi}{125} \mathrm{~cm}^{3}$
Also for the cone $P R M$, radius $\mathrm{OP}=\frac{12}{5} \mathrm{~cm}$, height $O R=\frac{16}{5} \mathrm{~cm}$
$\therefore \quad$ Volume $=\frac{1}{3} \pi\left(\frac{12}{5}\right)^{2} \times \frac{16}{5}=\frac{768 \pi}{125} \mathrm{~cm}^{3}$
Hence total volume, i.e., volume of the double cone
$=\left(\frac{432 \pi}{125}+\frac{768 \pi}{125}\right)=\frac{1200 \pi}{125}=9.6 \times 3.14 \mathrm{~cm}^{3}=30.144 \mathrm{~cm}^{3}$

OR

Let height of the cone 1 be ' h ' cm and the height of the cone 2 be $(21 \mathrm{~cm}-h)$.
As the ratio of volumes of cone c_{1} and c_{2} is $2: 1$, their radii are same equal to $r=\frac{6}{2} \mathrm{~cm}=3 \mathrm{~cm}$.

21 cm
$\therefore \quad \frac{V_{1}}{V_{2}}=\frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}$
$\Rightarrow \quad \frac{2}{1}=\frac{h}{21 c m-h}$
Or $42 c m-2 h=h$
Or, $3 h=42 \mathrm{~cm}$
$\Rightarrow \quad h=\frac{42}{3}=14 \mathrm{~cm}$
Hence, height of cone $1=14 \mathrm{~cm}$ and height of cone $2=7 \mathrm{~cm}$

Cone I	Cone II	Cylinder
$r_{1}=\frac{6}{3}=3 \mathrm{~cm}$	$r_{2}=3 \mathrm{~cm}$	$r=3 \mathrm{~cm}$
$h_{1}=14 \mathrm{~cm}$	$h_{2}=7 \mathrm{~cm}$	$h=21 \mathrm{~cm}$

Volume of cone $1=\frac{1}{3} \pi r_{1}^{2} h_{1}=\frac{1}{3} \times \frac{22}{7} \times 3 \times 3 \times 14=132 \mathrm{~cm}^{3}$
Volume of cone $2=\frac{1}{3} \pi r_{2}^{2} h_{2}=\frac{1}{3} \times \frac{22}{7} \times 3 \times 3 \times 7=22 \times 3=66 \mathrm{~cm}^{3}$
Volume of remaining portion of tube $=$ Volume of cylinder - Volume of cone $1-$ Volume of cone 2

$$
\begin{aligned}
& =\pi r^{2} h-132-66 \\
& =\frac{22}{7} \times 3 \times 3 \times 21-198 \\
& =22 \times 27-198=594-198=396 \mathrm{~cm}^{3} .
\end{aligned}
$$

Hence the required volume is $396 \mathrm{~cm}^{3}$.
35.

Class	Frequency	Cumulative Frequency
$0-10$	f_{1}	f_{1}
$10-20$	5	$5+f_{1}$
$20-30$	9	$14+f_{1}$
$30-40$	12	$26+f_{1}$
$40-50$	f_{2}	$26+f_{1}+f_{2}$
$50-60$	3	$29+f_{1}+f_{2}$
$60-70$	2	$31+f_{1}+f_{2}$
	$\sum f=40$	

Median $=32.5 \Rightarrow$ Median class is $30-40$.
Now $32.5=30+\frac{10}{12}\left(20-14-f_{1}\right) \quad \Rightarrow \quad f_{1}=3$
Also $31+f_{1}+f_{2}=40 \quad \Rightarrow \quad f_{2}=6$

SECTION-E

36. (i) Let n be the minimum number of days for AP. 51, 49, $47 \ldots \ldots \ldots$

$$
\begin{array}{llll}
\therefore & a_{n}=31 & & \\
\Rightarrow & a+(n-1) d=31 & \Rightarrow & 51+(n-1) \times(-2)=31 \\
\Rightarrow & (n-1) \times(-2)=-20 & \Rightarrow & n-1=10 \quad \Rightarrow \quad n=11
\end{array}
$$

(ii) Since Veer currently runs the distance in 51 seconds and with each day of practice it takes him 2 seconds less.
Thus, AP formed is $51,49,47, \ldots$.
(iii) Given $\mathrm{n}^{\text {th }}$ term of an AP is
$a_{n}=2 n+3$
$\therefore \quad d=a_{n}-a_{n-1}=(2 n+3)-(2(n-1)+3)$
$\Rightarrow \quad d=2$
37. (i) Coordinates of school are $(1,6)$.

Coordinates of House 1 are (3, 3).
Distance between school and House 1, is
$\sqrt{(3-1)^{2}+(3-6)^{2}}=\sqrt{4+9}=\sqrt{13} \mathrm{~km}$
(ii) Coordinates of House $1\left(H_{1}\right)$ are $(3,3)$.

House $3\left(\mathrm{H}_{3}\right)$ coordinates are $(2,2)$.
Coordinates of police station are $(5,5)$.
Let H_{1}, divides path joining H_{3} and police station in the ratio $k: 1$.

By section formula we have

$$
\begin{array}{rlll}
& 3 & =\frac{k(5)+1(2)}{k+1} & \\
& \Rightarrow \quad 3 k+3=5 k+2 \\
& \Rightarrow \quad 2 k=1 \quad 3-2=5 k-3 k \\
\therefore & k: 1=\frac{1}{2}: 1=1: 2 & \Rightarrow & k=\frac{1}{2}
\end{array}
$$

(iii) \quad Shortest distance $=\sqrt{(2-1)^{2}+(2-6)^{2}}=\sqrt{1+16}=\sqrt{17} \mathrm{~km}$
38. (i) Let θ be the angle of elevation.

$\therefore \quad \tan \theta=\frac{42}{42}=1$
$\Rightarrow \quad \tan \theta=1=\tan 45^{\circ} \Rightarrow \theta=45^{\circ}$
$\therefore \quad$ Angle of elevation is 45°
(ii) Let $x \mathrm{~m}$ be the required distance.

$$
\begin{array}{ll}
\therefore & \tan 60^{\circ}=\frac{42}{x} \\
\Rightarrow & \sqrt{3}=\frac{42}{x} \Rightarrow x=\frac{42}{\sqrt{3}} \\
\Rightarrow & x=\frac{42}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{42 \sqrt{3}}{3}=14 \sqrt{3}=14 \times 1.732=24.248 \mathrm{~m}
\end{array}
$$

(iii) Let $h \mathrm{~m}$ be the height of the vertical tower.

We have,

$$
\therefore \quad \tan 60^{\circ}=\frac{h}{20}
$$

$$
\Rightarrow \quad \sqrt{3}=\frac{h}{20} \Rightarrow h=20 \sqrt{3} m
$$

