

MATHEMATICS CLASS-X

SOLUTIONS

SECTION-A

HCF (26, 169) = 13 1.(C) LCM (26, 169) = $\frac{26 \times 169}{13}$ = 338 *.*.. **2.(B)** Let $p(x) = x^2 - 3x - m(m+3)$ $p(x) = x^{2} - (m+3)x + mx - m(m+3)$ \Rightarrow $= x \{x - (m+3)\} + m \{x - (m+3)\}$ For zeros of $p(x) = (x+m)\{(x-(m+3))\}=0$ ÷. Its zeros are -m, m+3Given quadratic equation, $2x^2 + kx + 2 = 0$ **3.(B)** Its discriminant, $D = (K)^2 - 4 \times 2 \times 2$ *.*.. $D = K^2 - 16$ \Rightarrow For roots to be real and equal $D = 0 \Longrightarrow K^2 - 16 = 0 \Longrightarrow K^2 = 16$ \Rightarrow K = +4Given lines are cx - y = 2 and 6x - 2y = 3. 4.(D) For infinitely many solutions, we have $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Longrightarrow \frac{c}{6} = \frac{-1}{-2} = \frac{-2}{-3} \Longrightarrow \frac{c}{6} = \frac{2}{3}$ $c = \frac{6}{2}$ and $c = 4 \implies c = 3$ and c = 4 \Rightarrow

Since, c has different values, hence, for no value of c, the pair of equations will have infinitely many solutions.

5.(A) We have,

$$\frac{m}{3} = \frac{-6 + (-2)}{2} \Longrightarrow m = \frac{-8}{2} \times 3 \Longrightarrow m = -12$$

6.(A) In $\triangle AOQ$ and $\triangle BOP$, we have

10.(B) In $\triangle POR$ we have $PR = OR \Longrightarrow \angle O = \angle P = 40^{\circ}$ $\angle R = 180^{\circ} - (\angle P + \angle Q) = 180^{\circ} - (40^{\circ} + 40^{\circ}) = 100^{\circ}$ $\angle R = 100^{\circ}$ We have, $\frac{AB}{PR} = \frac{5}{10} = \frac{1}{2}, \frac{AC}{OR} = \frac{5}{10} = \frac{1}{2} \Longrightarrow \frac{AB}{PR} = \frac{AC}{OR} = \frac{1}{2}$ Condition for both be triangles to be similar is $\angle A = \angle R = 100^{\circ}$ **11.(B)** We have, $(1 + \cot \theta - \csc \theta)(1 + \tan \theta + \sec \theta)$ $= \left(1 + \frac{\cos\theta}{\sin\theta} - \frac{1}{\sin\theta}\right) \left(1 + \frac{\sin\theta}{\cos\theta} + \frac{1}{\cos\theta}\right)$ $= \left(\frac{\sin\theta + \cos\theta - 1}{\sin\theta}\right) \left(\frac{\sin\theta + \cos\theta + 1}{\cos\theta}\right)$ $=\left(\frac{(\sin\theta+\cos\theta)^2-(1)^2}{\sin\theta\cos\theta}\right)=\frac{\sin^2\theta+\cos^2\theta+2\sin\cos\theta-1}{\sin\theta\cos\theta}$ $=\frac{1+2\sin\theta\cos\theta}{\sin\theta\cos\theta}=\frac{2\sin\theta\cos\theta}{\sin\theta\cos\theta}=2$ **12.(A)** $\angle AOB = 180^{\circ} - 50^{\circ} = 130^{\circ}$ P < √50° Let $\angle OAB = \angle OBA = x^{\circ}$ (Angles opposite to equal sides) Then $x^{\circ} + x^{\circ} + 130^{\circ} = 180^{\circ}$ $2x^\circ = 50^\circ \Longrightarrow x^\circ = 25^\circ$ \Rightarrow $\angle OAB = 25^{\circ}$ \Rightarrow **13.(B)** Area of shaded region = area of circle – area of rectangle Diagonal of rectangle = $\sqrt{12^2 + 5^2} = \sqrt{144 + 25} = 13 cm$ Radius of circle = $\frac{13}{2}$ cm Area of shaded region = $\pi \times \left(\frac{13}{2}\right)^2 - 12 \times 5 = \frac{3.14}{100} \times \frac{169}{4} - 60$ $=\frac{53060}{400}-60=132.66-60.00=72.66\ cm^2=73\ cm^2(\text{approx})$ 14.(D) First find the circumference of the wheel and then find number of revolution distance covered circumference of wheel

Circumference of wheel = $2\pi r$

$$= 2 \times \frac{22}{7} \times 42 = 12 \times 22$$

Number of revolution = $\frac{79200}{12 \times 22} = 300$

15.(B) $\frac{n}{2} = \frac{60}{2} = 30$, median class = 160 - 165

Modal class = 150 - 155 Required sum = 150 + 165 = 315

16.(C) Given: Length of arc = 20 cm

$$\Rightarrow \qquad \frac{\theta}{360^{\circ}} \times 2\pi r = 20$$
$$\Rightarrow \qquad \frac{60^{\circ}}{360^{\circ}} \times 2\pi r = 20$$
$$\Rightarrow \qquad \frac{\pi r}{3} = 20$$
$$\Rightarrow \qquad r\left(\frac{\pi}{3}\right) = 20$$
$$\Rightarrow \qquad r = \frac{60}{\pi} cm$$

17.(C) Number of required tickets = $6000 \times 0.08 = 480$

18.(A) In triangle CDE,

$$\tan 30^{\circ} = \frac{60 - h}{x}$$

$$\Rightarrow \quad \frac{1}{\sqrt{3}} = \frac{60 - h}{x}$$

$$\Rightarrow \quad x = \sqrt{3} (60 - h)m \qquad \dots(i)$$
Again, in triangle CAB,

$$\tan 60^{\circ} = \frac{60}{x}$$

$$\Rightarrow \quad \sqrt{3} = \frac{60}{x}$$

$$\Rightarrow \quad x = \frac{60}{\sqrt{3}}m \qquad \dots(ii)$$

From equation (i) and (ii) we get,

$$\sqrt{3} (60 - h) = \frac{60}{\sqrt{3}}$$
$$\implies 60 - h = 20$$
$$\implies h = 40 m$$

19.(C) We have LCM $(a,b) \times HCF(a,b) = a \times b$ LCM $\times 5 = 150$ $\therefore LCM = \frac{150}{5} = 30$ $\Rightarrow LCM = 30, i.e.$, reason is incorrect and assertion is correct. 20.(D) $PQ = 10 \Rightarrow PQ^2 = 100 \Rightarrow (10-2)^2 + (y+3)^2 = 100$ $\Rightarrow (y+3)^2 \Rightarrow 100-64 = 36 \Rightarrow y+3 = \pm 6$ $\Rightarrow y = -3 \pm 6 \Rightarrow y = 3, -9$ So, *A* is incorrect but *R* is correct.

SECTION-B

Given, rectangle ABCD. 21. \Rightarrow Opposite sides are equal. Hence, x + y = 30...(i) x - y = 14...(ii) (i) + (ii) $2x = 44 \implies x = 22$ Substituting in (i), $22 + y = 30 \implies y = 8$ x = 22, y = 8 \Rightarrow 22. We have. In $\triangle ABC, DE \parallel AC$ $\frac{BD}{DA} = \frac{BE}{EC}$ *.*.. Also, in $\triangle ABP, DC \parallel AP$ $\frac{BD}{DA} = \frac{BC}{CP}$ ·. ...(ii) From (i) and (ii), we have $\frac{BE}{EC} = \frac{BC}{CP}$

23. Given, $\angle QPR = 120^{\circ}$

 \therefore Radius is perpendicular to the tangent at the point of contact.

$$\therefore \qquad \angle OQP = 90^\circ \text{ and}$$

 $\angle QPO = 60^{\circ}$ (Tangents drawn to a circle from an external point are equally inclined to the segment, joining the centre to that point.)

In
$$\triangle QPO$$
, $\cos 60^\circ = \frac{PQ}{PO} \Rightarrow \frac{1}{2} = \frac{PQ}{PQ} \Rightarrow 2PQ = PO$

24. Let the outer and inner radii of the ring be *R* m and *r* m respectively. Then, $2\pi R = 396$ and $2\pi r = 352$

Hence, width of the track = (R - r) = (63 - 56) = 7m

OR

Let r be the radius and 0 be the angle subtended by the arc at the centre of the circle.

$$\frac{6}{360} \times 2\pi r = 22$$

$$\Rightarrow \quad \frac{60}{360} \times 2\pi r = 22 \Rightarrow \frac{\pi r}{3} = 22$$

$$\Rightarrow \quad r = \frac{3 \times 22}{\pi} = \frac{3 \times 22}{\frac{22}{7}} = 21cm$$

 \therefore Radius = 21 cm

25. $\sin \theta = \cos \theta$ (Given)

It means value of $\theta = 45^{\circ}$

Now, $2\tan\theta + \cos^2\theta = 2\tan 45^\circ + \cos^2 45^\circ$

$$= 2 \times 1 + \left(\frac{1}{\sqrt{2}}\right)^2 = 2 + \frac{1}{2} = \frac{4+1}{2} = \frac{5}{2} \left(\operatorname{Q} \tan 45^\circ = 1, \cos 45^\circ = \frac{1}{\sqrt{2}} \right)$$

OR

$$\sin^2 A = 2\sin A$$

$$\Rightarrow \quad \sin^2 A - 2\sin A = 0 \quad \Rightarrow \quad \sin A(\sin A - 2) = 0$$

\Rightarrow	either $\sin A = 0$	or	$\sin A - 2 = 0$
\Rightarrow	$A = 0^{\circ}$		$(\sin A = 2$, which is not possible)
·.	Value of $\angle A = 0^{\circ}$		

SECTION-C

Given $\sqrt{2}$ is irrational. 26.

To prove: $5+3\sqrt{2}$ is irrational.

Proof: Let us assume $5+3\sqrt{2}$ is rational. So it can be written in the form $\frac{a}{b}$ where $a, b \in Z, b \neq 0$, HCF(a,b) = 1.

$$5 + 3\sqrt{2} = \frac{a}{b} \Longrightarrow 3\sqrt{2} = \frac{a}{b} - 5$$
$$3\sqrt{2} = \frac{a - 5b}{b} \Longrightarrow \sqrt{2} = \frac{a - 5b}{3b}$$

This shows that $\sqrt{2}$ is rational (a-5b and 3b are integers). But we know that $\sqrt{2}$ is irrational. This contradicts our assumption that $5+3\sqrt{2}$ is rational.

 $5+3\sqrt{2}$ is irrational, hence proved. \Rightarrow

It is given that α and β are zeros of the polynomial $2x^2 - 3x + 1$. 27.

$$\therefore \qquad \alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2} \text{ and } \alpha\beta = \frac{1}{2}$$

Now, new quadratic polynomial whose zeros are 3α and 3β is given by x^2 – (sum of zeros) x + product of zeros

$$= x^{2} - (3\alpha + 3\beta)x + 3\alpha \times 3\beta = x^{2} - 3(\alpha + \beta)x + 9\alpha\beta$$

= $x^{2} - (3\alpha + 3\beta)x + 3\alpha \times 3\beta = x^{2} - 3(\alpha + \beta)x + 9\alpha\beta$
= $x^{2} - 3 \times \frac{3}{2}x + 9 \times \frac{1}{2}$
= $x^{2} - \frac{9}{2}x + \frac{9}{2} = \frac{1}{2}(2x^{2} - 9x + 9)$

28. Let the speed of the boat be *x* km/h and speed of the stream be y km/h.

> *.*.. Speed of boat in upstream = (x - y) km/h

and speed of boat in downstream = (x + y) km/h

According to question, ...

$$\frac{30}{x-y} + \frac{44}{x+y} = 10 \qquad ...(i)$$
And $\frac{40}{x-y} + \frac{55}{x+y} = 13 \qquad ...(ii)$
 $(i) \times 4 - (ii) \times 3$ gives
 $\frac{1}{x+y} (176 - 165) = 1$
 $\Rightarrow x+y = 11 \qquad ...(iii)$

Putting the value of x + y = 11 in equation (i), we have

$$\frac{30}{x-y} + \frac{44}{11} = 10$$

$$\Rightarrow \qquad \frac{30}{x-y} + 4 = 10 \Rightarrow \frac{30}{x-y} = 104 = 6$$

$$\Rightarrow \qquad x-y=5 \qquad \dots(iv)$$
By adding equations (iii) and (iv), we have
$$x+y=11$$

$$\frac{x-y=5}{2x=16}$$

$$\Rightarrow \qquad x=8$$
Putting $x = 8$ in equation (iii), we have
$$8+y=11$$

$$y=11-8=3 \Rightarrow y=3$$
Speed of boat is 8 km/h and speed of stream is 3 km/h.
OR
Let the digits at units and tens places be x and y, respectively.
$$\therefore \qquad xy=14$$

$$\Rightarrow \qquad y=\frac{14}{x} \qquad \dots(i)$$
According to the questions:
$$10x+y+45=10y+x$$

$$\Rightarrow \qquad 9x-9y+45=0$$

$$\Rightarrow \qquad x-y+5=0 \qquad \dots(ii)$$
From (i) and (ii), we get:
$$x-\frac{14}{x}+5=0$$

$$\Rightarrow \qquad x^2+5x-14=0$$

$$\Rightarrow \qquad x^2+7x-2x-14=0$$

$$\Rightarrow \qquad x(x+7)-2(x+7)=0$$

$$\Rightarrow x^{2} - 7x + 2x - 14 = 0$$

$$\Rightarrow (x + 7) (x - 2) = 0$$

$$\Rightarrow x = -7 \text{ or } x = 2$$

$$\Rightarrow x = -7 \text{ (the digit cannot be negative)}$$

Putting $x = 2$ in equation (i), we get:

y = 7

$$\therefore$$
 Required number = $10 \times 2 + 7 = 27$

29.
$$\sin\theta + \cos\theta = \sqrt{3}$$

 $\Rightarrow (\sin\theta + \cos\theta)^2 = 3$
 $\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3$
 $\Rightarrow 2\sin\theta\cos\theta = 2$ ($Q\sin^2\theta + \cos^2\theta = 1$)
 $\Rightarrow \sin\theta.\cos\theta = 1 = \sin^2\theta + \cos^2\theta$
 $\Rightarrow 1 = \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta} \Rightarrow 1 = \frac{\sin^2\theta}{\sin\theta\cos\theta} + \frac{\cos^2\theta}{\sin\theta\cos\theta}$
 $\Rightarrow 1 = \tan\theta + \cot\theta$
Therefore $\tan\theta + \cot\theta = 1$

30.

Given: A quadrilateral circumscribing a circle, with centre *O*, such that it touches side *AB*, *BC*, *CD*, *AD* at *P*, *Q*, *R* and *S*.

To prove:
$$AB + CD = BC + DA$$

Proof: Length of tangent drawn from external point are equal.

AP = AS	$(\operatorname{at} A)$	(i)
BP = BQ	— (at <i>B</i>)	(ii)
DR = DS	— (at <i>C</i>)	(iii)
CR = CQ	— (at <i>D</i>)	(iv)
Adding equati	on (i), (ii), (iii), (iv)
AP + BP + DR + CR = AS + DS + BQ + CQ		
$\Rightarrow AB + e$	CD = AD + BC	

Hence Proved.

OR

Given: Circle (O, r) *AP* and *PB* are tangents drawn to the circle. To prove : PA = PB.

Construction: Join *OA*, *OB* and *OP*. Proof: OA = OB [Radii] $\angle OAP = \angle OBP = 90^{\circ}$ (Right a

(Right angle)[Q Radius is perpendicular to tangent at point of contact]

	OP = C)P	(Hypotenuse)
	So in Δ	$AOAP \cong \triangle OBP$	
	\Rightarrow	$\Delta OAP \cong \Delta OBP$	[By RHS congruency]
	\Rightarrow	AP = BP	[By CPCT]
		Hence proved	
31.	Total n	umber of outcomes $= 36$	
	(i)	Favourable outcomes a	re (1, 1,) (1, 2) (1, 3) (1, 4) (1, 5) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2)
		(3, 3) (4, 1) (4, 2) (5, 1)	
		\therefore <i>P</i> (sum less that	$(n 7) = \frac{15}{36} \text{ or } \frac{5}{12}$
	(ii)	Favourable outcomes an	re (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
		(3, 1) (3, 2) (3, 3) (3, 4)	(3, 5) (4, 1) (4, 2) (4, 3) (5, 1) (5, 2) (5, 3) (6, 1) (6, 2) i.e., 25.
		\therefore <i>P</i> (product less	than 16) = $\frac{25}{36}$
	(iii)		re(1, 1)(3, 3)(5, 5) i.e., 3.
		\therefore P (doublet of or	$\operatorname{Id number}) = \frac{3}{36} or \frac{1}{12}$

SECTION-D

32. Let, time taken by faster tap to fill the tank be x hours. Therefore, time taken by slower tap to fill the tank = (x + 3) hours Since the faster tap takes x hours to fill the tank.

 \therefore Portion of the tank filled by the faster tap in one hour = $\frac{1}{x}$

Portion of the tank filled by the slower tap in one hour = $\frac{1}{x+3}$

Portion of the tank filled by the two tap together in one hour = $\frac{1}{\frac{40}{13}} = \frac{13}{40}$

According to question,

\Rightarrow	$\frac{1}{x} + \frac{1}{x+3} = \frac{13}{40}$	\Rightarrow	$\frac{x+3+x}{x(x+3)} = \frac{13}{40}$
\Rightarrow	40(2x+3) = 13x(x+3)	\Rightarrow	$80x + 120 = 13x^2 + 39x$
\Rightarrow	$13x^2 - 41x - 120 = 0$	\Rightarrow	$13x^2 - 65x + 24x - 120 = 0$
\Rightarrow	13x(x-5)+24(x-5)=0	\Rightarrow	(x-5)(13x+24)=0
	Eithre $x - 5 = 0$	or	13x + 24 = 0
\Rightarrow	<i>x</i> = 5	or	$x = \frac{-24}{13}$
\Rightarrow	<i>x</i> = 5	[Q <i>x</i>	cannot be negative]

Hence, time taken by faster tap to fill the tank = x = 5 hours and time taken by slower tap = x + 3 = 5 + 3 = 8 hours.

Let the speed of stream be x km/h. The speed of the boat upstream = (18 - x) km/h *.*.. and Speed of the boat downstream = (18 + x) km/h According to question, $\frac{24}{18-x} - \frac{24}{18+x} = 1$ $24(18+x) - 24(18-x) = 324 - x^2$ \Rightarrow $\Rightarrow 48x = 324 - x^2 \Rightarrow x^2 + 48x - 324 = 0$ $\Rightarrow x^2 + 54x - 6x - 324 = 0 \Rightarrow x(x + 54) - 6(x + 54)$ (x+54)(x-6)=0 \Rightarrow But $x \neq -54$, $\therefore x = 6$ [Speed can't be negative] *.*.. Speed of the stream = 6 km/h. In $\triangle BMC$ and $\triangle EMD$, we have MC = MD(**Q** *M* is the mid-point of *CD*) D E M R $\angle CMB = \angle DME$ (Vertically opposite angles) and $\angle MBC = \angle MED$ (Alternate angles) $\Delta BMC \cong \Delta EMD$ (By AAS criterion of congruence) \Rightarrow BC = DE(CPCT) Also, BC = AD(**Q** *ABCD* is a parallelogram) Now, in $\triangle AEL$ and $\triangle CBL$, we have $\angle ALE = \angle CLB$ (Vertically opposite angles) $\angle EAL = \angle BCL$ (Alternate angles) $\therefore \Delta AEL : \Delta CBL$ (By AA similarity) $\frac{EL}{BL} = \frac{AE}{CB} \Longrightarrow \frac{EL}{BL} = \frac{2BC}{BC}$ $(\mathbf{Q} AE = AD + DE = BC + BC = 2BC)$ $\frac{EL}{BI} = 2 \Longrightarrow EL = 2BL$ \Rightarrow

34. In the given Fig., $\triangle PQR$ is a right triangle, where PQ = 3cm, PR = 4cm and QR = 5cm. Let $OQ = x \Longrightarrow OR = 5 - x$ and OP = y

33.

Hence total volume, i.e., volume of the double cone

$$= \left(\frac{432\pi}{125} + \frac{768\pi}{125}\right) = \frac{1200\pi}{125} = 9.6 \times 3.14 cm^3 = 30.144 cm^3$$

OR

Let height of the cone 1 be 'h' cm and the height of the cone 2 be (21 cm - h).

As the ratio of volumes of cone c_1 and c_2 is 2 : 1, their radii are same equal to $r = \frac{6}{2}cm = 3cm$.

$$\therefore \qquad \frac{V_1}{V_2} = \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2}$$
$$\Rightarrow \qquad \frac{2}{1} = \frac{h}{21 cm - h}$$
Or 42 cm - 2 h = h
Or, 3h = 42 cm

$$\Rightarrow h = \frac{42}{3} = 14 cm$$

Hence, height of cone 1 = 14 cm and height of cone 2 = 7 cm

Cone I	Cone II	Cylinder
$r_1 = \frac{6}{3} = 3 \ cm$	$r_2 = 3 cm$	r = 3 cm
$h_1 = 14 cm$	$h_2 = 7 cm$	h = 21 cm

Volume of cone $1 = \frac{1}{3}\pi r_1^2 h_1 = \frac{1}{3} \times \frac{22}{7} \times 3 \times 3 \times 14 = 132 \, cm^3$

Volume of cone $2 = \frac{1}{3}\pi r_2^2 h_2 = \frac{1}{3} \times \frac{22}{7} \times 3 \times 3 \times 7 = 22 \times 3 = 66 \text{ cm}^3$

Volume of remaining portion of tube = Volume of cylinder – Volume of cone 1 – Volume of cone 2

$$= \pi r^2 h - 132 - 66$$

= $\frac{22}{7} \times 3 \times 3 \times 21 - 198$

$$= 22 \times 27 - 198 = 594 - 198 = 396 \ cm^3.$$

Hence the required volume is $396 \ cm^3$.

35.

Class	Frequency	Cumulative Frequency
0-10	f_1	f_1
10-20	5	$5 + f_1$
20-30	9	$14 + f_1$
30-40	12	$26 + f_1$
40 - 50	f_2	$26 + f_1 + f_2$
50-60	3	$29 + f_1 + f_2$
60-70	2	$31 + f_1 + f_2$
	$\sum f = 40$	

 $Median = 32.5 \implies Median \ class \ is \ 30-40.$

Now
$$32.5 = 30 + \frac{10}{12}(20 - 14 - f_1) \implies f_1 = 3$$

Also $31 + f_1 + f_2 = 40 \implies f_2 = 6$

SECTION-E

36. Let n be the minimum number of days for AP. 51, 49, 47 (i) $a_n = 31$ a + (n-1)d = 31 \Rightarrow 51+(n-1)×(-2) = 31 \Rightarrow $(n-1) \times (-2) = -20$ \Rightarrow $n-1=10 \implies$ *n* = 11 \Rightarrow (ii) Since Veer currently runs the distance in 51 seconds and with each day of practice it takes him 2 seconds less. Thus, AP formed is 51, 49, 47, Given nth term of an AP is (iii) $a_n = 2n + 3$ $d = a_n - a_{n-1} = (2n+3) - (2(n-1)+3)$ d = 2 \Rightarrow 37. (i) Coordinates of school are (1,6). Coordinates of House 1 are (3, 3). Distance between school and House 1, is $\sqrt{(3-1)^2 + (3-6)^2} = \sqrt{4+9} = \sqrt{13} \ km$ (ii) Coordinates of House $1(H_1)$ are (3, 3). 1 Police station H_3 H₁ (5, 5) (2, 2) (3, 3)House $3(H_3)$ coordinates are (2,2). Coordinates of police station are (5, 5). Let H_1 , divides path joining H_3 and police station in the ratio k: 1.

By section formula we have $3 = \frac{k(5) + 1(2)}{k+1}$ 3k + 3 = 5k + 2 \Rightarrow 3-2=5k-3k \Rightarrow $\Rightarrow k = \frac{1}{2}$ $\Rightarrow 2k=1$ $k:1=\frac{1}{2}:1=1:2$ *.*.. Shortest distance = $\sqrt{(2-1)^2 + (2-6)^2} = \sqrt{1+16} = \sqrt{17} \ km$ (iii) Let θ be the angle of elevation. (i) India Gate 42 m 42 m $\tan \theta = \frac{42}{42} = 1$ *.*.. $\tan \theta = 1 = \tan 45^\circ \Longrightarrow \theta = 45^\circ$ \Rightarrow Angle of elevation is 45° *.*. (ii) Let x m be the required distance. India Gate 42 m 60° X m $\therefore \qquad \tan 60^\circ = \frac{42}{x}$ $\Rightarrow \sqrt{3} = \frac{42}{x} \Rightarrow x = \frac{42}{\sqrt{3}}$ $\Rightarrow \qquad x = \frac{42}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{42\sqrt{3}}{3} = 14\sqrt{3} = 14 \times 1.732 = 24.248m$

(iii) Let h m be the height of the vertical tower.We have,

$$\therefore \qquad \tan 60^\circ = \frac{h}{20}$$

38.

