

Solutions of JEE Advanced 2024 | Paper - 1

PHYSICS

1.(A)
$$[e] = [TA]$$

$$[e_0] = \left[M^{-1}L^{-3}T^{4}A^{2} \right]$$

$$[h] = \left[ML^{2}T^{-1} \right]$$

$$[c] = \left[LT^{-1} \right]$$

$$[TA]^{\alpha} \left[M^{-1}L^{-3}T^{4}A^{2} \right]^{\beta} \left[ML^{2}T^{-1} \right]^{\gamma} \left[LT^{-1} \right]^{\delta} = \left[M^{0}L^{0}T^{0}A^{0} \right]$$
For $[M] : -\beta + \gamma = 0 \Rightarrow \beta = \gamma$
For $[M] : -\beta + \gamma = 0 \Rightarrow \beta = \gamma$
For $[L] : -3\beta + 2\gamma + \delta = 0$

$$-\beta + \delta = 0 \Rightarrow \delta = \beta$$
For $[A] : \alpha + 2\beta = 0 \Rightarrow \alpha = -2\beta$
For $[T] : \alpha + 4\beta - \gamma - \delta = 0$
This is also satisfied If $\beta = -n$ then $\alpha = 2n, \gamma = -n, \delta = -n$
2.(A) Join A and B to O to form a closed loop
Using amperes' law
$$\oint \vec{B} \cdot \vec{dl} = \mu_{0} I_{\text{enclosed}}$$

$$Ian \theta_{2} = \frac{a}{a} = 1 \Rightarrow \theta_{2} = \frac{\pi}{4}$$

$$I_{\text{enclosed}} = \frac{I}{2\pi} (\theta_{1} + \theta_{2}) = \frac{I}{2\pi} \times \frac{7\pi}{12} = \frac{7I}{24}$$

$$\oint \vec{B} \cdot \vec{dl} = \mu_{0} \left(\frac{-7I}{24} \right)$$

3.(B)
$$F = \frac{1}{4\pi \epsilon_0} \frac{q^2}{\left(2R\cos\frac{\theta}{2}\right)^2}$$
Restoring torque
 $\tau = -F\sin\frac{\theta}{2}R$
 $mR^2\alpha = -\frac{q^2}{4\pi\epsilon_0 4R^2\cos^2\frac{\theta}{2}}\sin\frac{\theta}{2}R$
For small θ ,
 $\sin\frac{\theta}{2} = \frac{\theta}{2}, \cos\frac{\theta}{2} = 1$
 $mR^2\alpha = -\frac{q^2}{32\pi\epsilon_0 R}\theta$ \therefore $\omega^2 = \frac{q^2}{32\pi\epsilon_0 R^3m}$
4.(C) $F = -20x + 10 = -20(x - 0.5)$
Motion is SHM with
 $\omega^2 = \frac{20}{5} = 4 \Rightarrow \omega = 2$
Mean position is $x = 0.5$
 \therefore $x = 0.5 + A\sin(\omega t + \phi)$
 $v = A\cos(\omega t + \phi)$
At $t = 0$, $v = 0$, $x = 1$
 $\theta = A\cos(\phi)$ $\therefore \phi = \frac{\pi}{2}$
 $I = 0.5 + A \Rightarrow A = 0.5$
 \therefore $x = 0.5 + 0.5\sin\left(2t + \frac{\pi}{2}\right) = 0.5 + 0.5\cos 2t$
At $t = \frac{\pi}{4}, x = 0.5 + 0.5\cos\frac{\pi}{2} = 0.5m$
 $v = A\cos(\omega(w + \frac{\pi}{2})) = -\sin 2t$
At $t = \frac{\pi}{4}, v = -\sin\frac{\pi}{2} = -1$
 $p = mv = -5 \, kgm/s$

5.(ABC) $kr = \frac{mv^2}{r}$...(1) $mvr = n\hbar$...(2) Using (1) and (2) $mv^2 = k\left(\frac{n\hbar}{mv}\right)^2 \Rightarrow v^4 = \frac{k}{m}\left(\frac{n\hbar}{m}\right)^2$ \therefore $v^2 = n\hbar\sqrt{\frac{k}{m^3}}$ $r^2 = \frac{m}{k}v^2 = \frac{m}{k}n\hbar\sqrt{\frac{k}{m^3}} = n\hbar\sqrt{\frac{1}{mk}}$ $\frac{L}{mr^2} = \frac{n\hbar}{m\left(n\hbar\sqrt{\frac{1}{mk}}\right)} = \sqrt{\frac{k}{m}}$ Potential energy $= \frac{kr^2}{2} = \frac{k}{2}\left(n\hbar\sqrt{\frac{1}{mk}}\right) = \frac{n\hbar}{2}\sqrt{\frac{k}{m}}$ Kinetic energy $= \frac{1}{2}mv^2 = \frac{1}{2}m\left(n\hbar\sqrt{\frac{k}{m^3}}\right) = \frac{n\hbar}{2}\sqrt{\frac{k}{m}}$ Total energy = Potential energy + kinetic energy $= n\hbar\sqrt{\frac{k}{m}}$

6.(ACD) With O as node,

Fundamental frequency of string PO

$$v_1 = \frac{1}{2L} \sqrt{\frac{T}{\mu}} = v_0$$

Fundamental frequency of string OQ

$$v_2 = \frac{1}{2(2L)} \sqrt{\frac{T}{4\mu}} = \frac{v_0}{4}$$
 \therefore Minimum required frequency $= v_0$

PO vibrates with fundamental frequency and OQ vibrates in 4th harmonic

Total loops = 1 + 4 = 5

Total nodes = 6

With *O* as antinode

...

Fundamental frequency of string PO

$$v_1 = \frac{1}{4L} \sqrt{\frac{T}{\mu}} = \frac{v_0}{2}$$

Fundamental frequency of string OQ

$$v_2 = \frac{1}{4(2L)} \sqrt{\frac{T}{4\mu}} = \frac{v_0}{8}$$

As only odd harmonics are allowed, so we can't get a common vibrating frequency.

7.(AB) The combination behaves as a mirror

$$\begin{aligned} \frac{1}{f} &= \frac{1}{f_n} - \frac{2}{f_l} = -\frac{2}{f_l} = -2\left(\frac{1}{f_l} + \frac{1}{f_2}\right) \\ \frac{1}{f_1} &= (n-1)\left(\frac{1}{\omega} - \frac{1}{9}\right) \\ \frac{1}{f_2} &= (1.6-1)\left(\frac{1}{9} - \frac{1}{\omega}\right) \\ \frac{1}{f_2} &= -2\left[(n-1)\left(-\frac{1}{9}\right) + (0.6)\left(\frac{1}{9}\right)\right] \\ \text{For } n = 1.42 \\ \frac{1}{f} &= -2\left[(0.42)\left(-\frac{1}{9}\right) + (0.6)\left(\frac{1}{9}\right)\right] = -2\left[\frac{1}{9} \times 0.18\right] \implies f = -25 \implies h = 2 \mid f \mid = 50 \text{ cm} \\ \text{For } n = 1.35 \\ \frac{1}{f} &= -2\left[0.35\left(-\frac{1}{9}\right) + 0.6\left(\frac{1}{9}\right)\right] = -2\left[\frac{1}{9} \times 0.25\right] \\ f &= -18 \implies h = 2 \mid f \mid = 36 \text{ cm} \\ \text{For } n = 1.45 \\ \frac{1}{f} &= -2\left[0.45\left(-\frac{1}{9}\right) + 0.6\left(\frac{1}{9}\right)\right] = -2\left[\frac{1}{9} \times 0.15\right] \\ f &= -30 \implies h = 2 \mid f \mid = 60 \text{ cm} \\ \text{For } n = 1.48 \\ \frac{1}{f} &= -2\left[0.48\left(-\frac{1}{9}\right) + 0.6\left(\frac{1}{9}\right)\right] = -2\left[\frac{1}{9} \times 0.12\right] \\ f &= -\frac{75}{2} \implies h = 2 \mid f \mid = 75 \text{ cm} \\ 8.(2500) \qquad dQ = mCdT = 1(kT)dT \end{aligned}$$

$$Q = \int dQ = \int_{200}^{300} kT dT = k \left[\frac{T^2}{2} \right]_{200} = \frac{k}{2} [90000 - 40000] = 25000 k$$

9.(12) Conserving angular momentum about the fixed axis,

$$0 = \left(-\frac{MR^2}{2}\omega'\right) + \left(\frac{M(R/2)^2}{2}\omega - M(\omega'R)R\right)$$
$$0 = -\frac{3}{2}MR^2\omega' + \frac{MR^2}{8}\omega$$
$$\omega' = \frac{\omega}{12}$$
10.(8) $r = \frac{I_A}{I_B} = 2$

After placing two polaroids before B

$$I'_{B} = \frac{I_{B}}{2} \cos^{2} 45^{\circ} = \frac{I_{B}}{4}$$

$$\therefore \qquad r' = \frac{I_{A}}{I'_{B}} = 4\frac{I_{A}}{I_{B}} = 4r = 8$$

11.(200) Case I: $288 = \left(\frac{c+v}{c-v}\right)240$...(1)
Case 2: $n = \left(\frac{c-v}{c+v}\right)240$...(2)
Multiplying (1) and (2)
 $288n = 240 \times 240$
 240×240

 $n = \frac{240 \times 240}{288} = 200$

12.(3) For Tank 1:

$$v = \sqrt{2gy}$$

$$A\left(-\frac{dy}{dt}\right) = a\sqrt{2gy}$$

$$\int_{h}^{0} \frac{dy}{\sqrt{y}} = -\frac{a}{A}\sqrt{2g}\int_{0}^{t_{1}} dt$$

$$2\sqrt{h} = \frac{a}{A}\sqrt{2g} t_{1}$$
...(1)

For tank 2:

$$v = \sqrt{2gy}$$
$$A\left(-\frac{dy}{dt}\right) = a\sqrt{2gy}$$
$$\int_{H+h}^{H} \frac{dy}{\sqrt{y}} = -\frac{a}{A}\sqrt{2g} \int_{0}^{t_{2}} dt$$

$$2\left(\sqrt{H+h} - \sqrt{H}\right) = \frac{a}{A}\sqrt{2g} t_{2}$$
Using $H = \frac{16}{9}h$

$$2\left(\sqrt{\frac{25}{9}h} - \sqrt{\frac{16}{9}h}\right) = \frac{a}{A}\sqrt{2g} t_{2}$$

$$2\left(\frac{1}{3}\sqrt{h}\right) = \frac{a}{A}\sqrt{2g} t_{2} \dots (2)$$
From (1) and (2)
$$3 = \frac{t_{1}}{t_{2}}$$
13.(18) $p = mv$...(1)
$$px = \frac{mL^{2}}{12}\omega \dots (2)$$

$$p = mv$$

If rod remains aligned with string, angular velocity of rod about its own axis is equal to angular velocity of string about *O*.

$$\therefore \qquad \omega = \frac{V}{3L/2} \Rightarrow V = \frac{3}{2}L\omega$$
Putting in (1), $p = m\frac{3}{2}L\omega$
Using in (2) $m\frac{3}{2}L\omega x = \frac{mL^2}{12}\omega \Rightarrow x = \frac{L}{18}$
14.(B) Let volume at $J = V_0$
Then volume at $K = 3V_0$
Volume at $L = \frac{3V_0}{2}$
Volume at $M = \frac{V_0}{2}$
(P) $W_{JK} = p_0(3V_0 - V_0) = 2p_0V_0$
 $W_{KL} = nR3T_0 \ln\left(\frac{1}{2}\right) = -3nRT_0 \ln 2$
 $W_{LM} = 2p_0\left(\frac{V_0}{2} - \frac{3V_0}{2}\right) = -2p_0V_0$
 $W_{MJ} = nRT_0 \ln(2)$
Total work done $= -2nRT_0 \ln 2 = -2RT_0 \ln 2$
(Q) $\Delta U_{JK} = nC_v\Delta T = (1)\frac{3}{2}R(3T_0 - T_2) = 3RT_0$

(*S*)

$$(R) \qquad \Delta Q_{KL} = W_{KL} = -3RT_0 \ln 2$$

$$\Delta U_{MJ} = nC_v \Delta T = (1)\frac{3}{2}R(0) = 0$$

15.(C) (*P*)

$$\begin{array}{c|c} \bullet & V_1 & V_2 \\ \bullet & & \\ V & & \\ \end{array} \begin{array}{c} V_1 & V_2 \\ \bullet & \\ \end{array} \begin{array}{c} \bullet \\ \bullet \\ O \end{array}$$

Three capacitors in series.

$$C = \frac{C_0}{3}$$

(Q)

$$V_1$$
 V_1 V_1 O

Two capacitors in series

$$C = \frac{Co}{2}$$

(R)

(S)

Three capacitors in parallel C = 3Co

16.(A) The path of the ray is as shown

$$\alpha = (\theta_0 - \phi_0) + (180^\circ - 2\phi_0) + (\theta_0 - \phi_0)$$
$$\theta = 180^\circ + 2\theta_0 - 4\phi_0$$
$$(P) \qquad \alpha = 180^\circ \Longrightarrow \theta_0 = 2\phi_0$$
$$\sin \theta_0 = 2\sin \phi_0$$

$$\sin 2\phi_0 = 2\sin \phi_0$$

$$2\sin \phi_0(\cos \phi_0 - 1) = 0 \qquad \therefore \qquad \phi_0 = 0 \Longrightarrow \theta_0 = 0$$

$$(Q, R) \quad \alpha = 180^\circ \Longrightarrow \theta_0 = 2\phi_0$$

$$\sin \theta_0 = \sqrt{3}\sin \phi_0$$

$$\sin 2\phi_0 = \sqrt{3}\sin \phi_0$$

$$\sin \phi_0(2\cos \phi_0 - \sqrt{3}) = 0 \qquad \therefore \phi_0 = 0 \text{ or } \phi_0 = 30^\circ$$

$$\Rightarrow \qquad \theta_0 = 0 \text{ or } \theta_0 = 60^\circ$$

$$(S) \qquad \theta_0 = 45^\circ$$

$$\sin \theta_0 = \sqrt{2}\sin \phi_0$$

$$\frac{1}{\sqrt{2}} = \sqrt{2}\sin \phi_0 \Rightarrow \phi_0 = 30^\circ$$

$$\alpha = 180^{\circ} + 2\theta_0 - 4\phi_0 = 180^{\circ} + 90^{\circ} - 120^{\circ} = 150^{\circ}$$

17.(A) (*P*) Current in inductor doesn't change suddenly, So $I_1 = 0$

(Q)
$$I_2 = \frac{20}{5} = 4A$$

(R) $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{25 \times 10^{-3} \times 10 \times 10^{-6}}} = \frac{1}{5 \times 10^{-4}} = 2000 \text{ rad/s} = 2 \text{ kilo} - \text{ rad/s}$

$$\frac{1}{2}L I_0^2 = \frac{1}{2}C V_0^2$$
$$\frac{1}{2} \times 25 \times 10^{-3} \times 16 = \frac{1}{2} \times 10 \times 10^{-6} \times V_0^2$$
$$V_0 = 200$$

CHEMISTRY

1.(D)
$$\frac{u_{rms_{X}}}{u_{rms_{Y}}} = \sqrt{\frac{3R \times 300}{M_{X}}} \times \sqrt{\frac{M_{Y}}{3R \times 300}} = \sqrt{\frac{M_{Y}}{M_{X}}} = 2:1$$
$$2 = \frac{10}{M_{X}} \frac{RT}{V} \quad \frac{2}{4} = \frac{10RT}{M_{X}} \times \frac{M_{Y}}{80RT}$$
$$4 = \frac{80}{M_{Y}} \times \frac{RT}{V} \quad \frac{M_{Y}}{M_{X}} = \frac{2 \times 8\emptyset}{4 \times 10} = 4$$
2.(A)
$$H_{NO_{2}}^{+3} \longrightarrow H_{NO_{3}}^{+5} + \frac{42}{NO_{3}}$$
3.(B)
$$4.(C)$$
$$5.(ABC) V = \frac{2\pi KZe^{2}}{nh}$$

6.(ABD)

7.(AD) CO_2, C_2H_4 , HCl and O_3 follow octet rule.

Vidyamandir Classes: Innovating For Your Success

(P)
$$K^+ + \underset{\text{More conductivity}}{\text{Cl}^-} + AgNO_3 \rightarrow K^+ + \underset{\text{Less conductivity}}{\text{NO}_3^-} + AgCl(s)$$

Conductance decreases slightly and then increase

(Q)
$$Ag^+ + NO_3^- + KCl \rightarrow K^+ + NO_3^- + AgCl(s)$$

Less conductivity conductivity

Conductance increases slightly and then increases

(**R**)
$$\operatorname{Na}^{+} + \operatorname{OH}^{-}_{\operatorname{More}} + \operatorname{HCl} \rightarrow \operatorname{Na}^{+} + \operatorname{Cl}^{-}_{\operatorname{less}} + \operatorname{H}_{2}\operatorname{O}_{\operatorname{conductivity}}$$

Conductance decrease rapidly and then increases rapidly

(S)
$$CH_3COOH + NaOH \rightarrow CH_3COO^- + Na^+ + H_2O$$

Conductance decreases rapidly and then no much change in conductance

16.(A) P-3, Q-5, R-4, S-1

(P)

17.(C) P-3; Q-5; R-4; S-1

(Q)

MATHEMATICS

$$\begin{aligned} \mathbf{1.(B)} \quad \lim_{t \to x} \frac{t^{10} f(x) - x^{10} f(x) + x^{10} f(x) - x^{10} f(t)}{t^9 - x^9} = 1 \\ \Rightarrow \quad \lim_{t \to x} \left(\frac{t^{10} - x^{10}}{t^9 - x^9} \right) \cdot f(x) + \lim_{t \to x} x^{10} \cdot \frac{[f(x) - f(t)]}{t^9 - x^9} = 1 \\ \Rightarrow \quad \lim_{t \to x} \frac{10t^9}{9t^8} f(x) + \lim_{t \to x} x^{10} \frac{[0 - f'(t)]}{9t^8} = 1 \\ \Rightarrow \quad \frac{10}{9} \cdot x \cdot f(x) + \frac{x^{10} \cdot [-f'(x)]}{9x^8} = 1 \Rightarrow \quad 10 \cdot x \cdot y - x^2 \cdot \frac{dy}{dx} = 9 \\ \Rightarrow \quad \frac{dy}{dx} - \frac{10y}{x} = \frac{-9}{x^2} \\ \mathbf{I.f.} = e^{-\int \frac{10}{x} dx} = e^{-10\log x} = x^{-10} \\ y \times x^{-10} = \int \frac{-9}{x^2} \times x^{-10} dx \\ \Rightarrow \quad \frac{y}{x^{10}} = -9 \int \frac{1}{x^{12}} dx \Rightarrow \qquad \frac{y}{x^{10}} = \frac{-9}{-11} \times \frac{1}{x^{11}} + c \Rightarrow y = \frac{9}{11x} + cx^{10} \\ x = 1, \ y = 2 \Rightarrow 2 = \frac{9}{11} + c \Rightarrow c = \frac{13}{11} \end{aligned}$$

2.(C)

3.(B)
$$\left(\sin\frac{11x}{2}\right) (\sin 6x - \cos 6x) + \left(\cos\frac{11x}{2}\right) (\sin 6x + \cos 6x)$$

 $= \cos\left(6x - \frac{11}{2}\right) + \sin\left(6x - \frac{11x}{2}\right)$
 $= \cos\frac{x}{2} + \sin\frac{x}{2}$
 $\cot x = \frac{-5}{\sqrt{11}} \Rightarrow \cos 2x = \frac{-5}{6}$
 $\Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{-5}{6} \Rightarrow \tan^2 \frac{x}{2} = 11$
 $\Rightarrow \tan \frac{x}{2} = \sqrt{11} \Rightarrow \sin\frac{x}{2} = \frac{\sqrt{11}}{2\sqrt{3}}$
 $\cos\frac{x}{2} = \frac{1}{2\sqrt{3}}$
4.(A)
 $q = 2$
 $y = mx \pm \sqrt{a^2m^2 + b^2}$
 $\Rightarrow 2 = pm \pm \sqrt{9m^2 + 4} \Rightarrow (2 - pm)^2 = 9m^2 + 4$
 $\Rightarrow 4 + p^2m^2 - 4pm = 9m^2 + 4 \Rightarrow (p^2 - 9)m^2 - 4pm = 0$
 $m \neq 0$ For ST $\Rightarrow m = \frac{4p}{p^2 - 9}$...(1)
Equation tangent is, $mx - y - \sqrt{9m^2 + 4} = 0$
 $\Rightarrow mx - y = \sqrt{9m^2 + 4}$
Let if (x_1, y_1) touches at $\Rightarrow \frac{xx_1}{9} + \frac{yy_1}{4} = 1$
Comparing $\frac{x_1}{9m} + \frac{y_1}{-4} = \frac{1}{\sqrt{9m^2 + 4}}$

$$\Rightarrow x_{1} = \frac{9m}{\sqrt{9m^{2} + 4}} \Rightarrow y_{1} = \frac{-4}{9m^{2} + 4}$$
Area of $\triangle ORT = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 9m & -4 & 1 \\ \sqrt{9m^{2} + 4} & \frac{-4}{\sqrt{9m^{2} + 4}} & 1 \\ \frac{-4}{\sqrt{9m^{2} + 4}} & 1$

5.(ACD) For $T_2 = (\sqrt{2} + 1)^n$, $n \in N$

(a)
$${}^{n}c_{0} + {}^{n}c_{2} \cdot 2 + ... + \sqrt{2} ({}^{n}c_{2} + 2 \cdot {}^{n}c_{3} + ...)$$

 $T_{1} = \{(-1 + \sqrt{2})^{n} : n \in N\}$
 ${}^{n}c_{0}(-1)^{n} + {}^{n}c_{2}(-1)^{n-2}2 + ... + \sqrt{2}({}^{n}c_{1}(-1)^{n-1} +))$
and $S = \{a + b\sqrt{2}, a, b \in Z\}$
Notice $T_{1}, T_{2} \in S$ and $ab = 0$ for $Z C S$
(b) Same $\lim_{n \to \infty} (-1 + \sqrt{2})^{n} = 0$
So, $\exists N : \forall n \ge N \implies (-1 + \sqrt{2})^{n} < \frac{1}{2024}$

(c) Notice
$$(\sqrt{2}+1)^n$$
 is unbounded and $2^{11} > 2024$
 $\Rightarrow (\sqrt{2}+1)^n > 2024$ for all $n \ge 11$
(d) For $\cos(\pi(a+b\sqrt{2})) + i\sin(\pi(a+b\sqrt{2}))$ to be an integer.

$$\Rightarrow a + b\sqrt{2} = I$$
 (some integer) $\Rightarrow b = 0$

6.(BCD)
$$ax^2 + 2bxy + cy^2 > 0 \quad \forall (x, y) \in \mathbb{R}^2 - \{(0, 0)\}$$

If $y = 0$, we get $ax^2 > 0 \quad \forall x \in \mathbb{R} - \{0\}$
 $\Rightarrow a > 0$
when $y \neq 0$, we get

$$a\left(\frac{x}{y}\right)^{2} + 2b\left(\frac{x}{y}\right) + c > 0 \quad \forall (x, y) \in R \times R$$

$$\Rightarrow \quad a > 0 \text{ and discriminant} < 0$$

$$\Rightarrow \quad b^{2} < ac \Rightarrow c > 0$$

(A) incorrect
(B) correct
(C) correct because $\begin{vmatrix} a & b \\ b & c \end{vmatrix} = ac - b^{2} > 0$
(D) correct
Infinite solution iff $(a+1)(c+1) = b^{2}$

$$\Rightarrow \quad (a+1)(c+1) < ac$$

Not possible because $a, c > 0$
(D)

/

7.(ABCD)

$$S = (h-1)^{2} + (k-2)^{2} + (l-3)^{2} - (h-4)^{2} - (k-2)^{2} - (l-7)^{2} = 50$$

$$\Rightarrow \qquad (2h-5)(3) + (2l-10)(4) = 50$$

$$\Rightarrow \qquad 6x + 8y = 105$$

For T:
$$6x + 8y = 5$$

Distance between planes $=\frac{100}{10}=10$ units

- Correct :: S is a plane on which we can find such triangle **(A)**
- **(B)** Correct :: T is a plane in which we can find L & M
- (C) and (D)

Correct : we can use 10 unit distinct as 2 sides to correct 2 parallel planes without any loss of generality assume we have a xy plane 4 another plane at 10 unit distance from it we can take (0, 0, 10), (12, 0, 10), (0, $2\sqrt{6}$, 0), (12, $2\sqrt{6}$, 0) for rectangle we can think about many such points, we can take the \perp distance of 10 units to be 2 sides as well and one side each on the places.

8.(8)
$$\log_a (18)^{5/4} = \frac{5}{4} \log_{3\sqrt{2}} 18 = \frac{5}{4} \times 2 = \frac{5}{2}$$

 $\Rightarrow \quad 3x + 2y = \frac{5}{2}$
 $b^6 = \frac{1}{5 \times 6^3} = \frac{1}{1080} = (1080)^{-1}$
 $\Rightarrow \quad b = (1080)^{-1/6}$

$$2x - y = \log_{b}(1080)^{\frac{1}{2}} = \frac{1}{2} \times \frac{1}{\left(\frac{-1}{6}\right)} \times 1$$

$$\Rightarrow \quad 2x - y = -3$$

$$\Rightarrow \quad 4x - 2y = -6 \qquad \dots(2)$$

$$3x + 2y = \frac{5}{2} \qquad \dots(1)$$
Add
$$9x = \frac{-7}{2} \Rightarrow x = \frac{-1}{2}$$

$$\Rightarrow \quad 4x = -2$$

$$\Rightarrow \quad y = 2 \Rightarrow 5y = 10$$

$$4x + 5y = -2 + 10 = 8$$

9.(20) Part-1

 $f'(x) = x[4x^2 + 3ax + 2b]$ all coefficient $\in R \& i\sqrt{3}$ is are root of f'(x) other root is $-i\sqrt{3}$ real root of f(x) is clearly '0'

sum of roots of
$$f'(x) = 0 \implies a = 0$$

Product of root of $4x^2 + 3ax + 2b = 0$ is $\frac{2b}{4} = i\sqrt{3} \times (-i\sqrt{3})$ $\Rightarrow b = 6$ Part-2 $f(x) = x^4 + 6x^2 + c$ f(1) = -9 $\Rightarrow f(x) = x^4 + 6x^2 - 16$ $= (x^2 + 8)(x^2 - 2)$ \therefore Roots are $\alpha_1 = 2\sqrt{2}i$ $\alpha_2 = -2\sqrt{2}i$

$$\alpha_3 = \sqrt{2}$$
$$\alpha_4 = -\sqrt{2}$$
$$\sum |\alpha_1|^2 = 8 + 8 + 2 + 2 = 20$$


```
|A| = \begin{vmatrix} 0 & 1 & c \\ 1 & a & d \\ 1 & b & e \end{vmatrix}
          = \begin{vmatrix} 0 & 1 & c \\ 0 & a-b & d-e \\ 1 & b & e \end{vmatrix} \quad \{R_2 \to R_2 - R_3\}
          |A| = (d-e) - c(a-b)
          Since : a, b, c, d, e \in \{0, 1\}
          Total possibilities = 32
          Part-2
          Only odd integral values taken by |A| can be \pm 1
          \Rightarrow We want |A| to be odd
          So, bad cases are those with |A| even
          Let's count bad cases.
Case : 1 (d - e) and c(a - b) are even
          For d - e to be even : d = e
          \Rightarrow 2 cases
          Part-3
          For c(a-b) to be even
          c = 0 \Longrightarrow 4 cases
          c = 1 \implies a = b \implies 2 case
          Total 12 cases
Case-2: d - e and c(a - b) are odd
          d-e is odd \Rightarrow d \neq e \Rightarrow 2 cases
          c(a-b) is odd \Rightarrow c = 1 and a \neq b \Rightarrow 2 cases
          Total 4 cases
          \Rightarrow Bad cases = 16
          And Good cases = 16 too
          ALTERNATIVELY : There is a bijective between good and bad cases. We can switch the value of d
          to map a good case to bad case.
          But we want |A| \in \{-1, 1\}
          d - e \in \{-1, 0, 1\}
          c(a-b) \in \{-1, 0, 1\}
```

11.(665) A_1 : selection in any manner A_2 : S_1 in team X A_3 : S_2 in team Y A_4 : $S_1 \& S_2$ in team X & Y respectively By principle inclusion exclusion Answer = $n(A_1) - n(A_2) - n(A_3) + n(A_4)$ $=\frac{9!}{4!3!2!}-\frac{8!}{1!3!4!}-\frac{8!}{2!2!4!}+\frac{7!}{1!2!4!}=1260-280-420+105=665$ 12.(5) $= \begin{vmatrix} \alpha & 1 & 1 \\ 1 & \frac{\beta - 1}{\beta} & 1 \\ 1 & 1 & \frac{1}{2} \end{vmatrix} = 0 = \begin{vmatrix} \alpha - 1 & \alpha & \alpha \\ \beta & \beta - 1 & \beta \\ 2 & 2 & 1 \end{vmatrix}$ $\begin{vmatrix} -1 & 0 & \alpha \\ 1 & -1 & \beta \\ 0 & 1 & 1 \end{vmatrix} = -1(-1-\beta) + \alpha(1) = 0 \implies 1+\beta+\alpha = 0$ $3\alpha + 3\beta - 2 + l = 0 \implies 1 + \beta + \alpha = 0$ \Rightarrow $\Rightarrow -3-2+l=0$ l = 5**13.(42)** Let P(X=0) = a $P(X=1) = a + d \implies$ Slope of straight line = d and y-intercept = a $\Rightarrow P(X=2) = a + 2d$ P(X = 3) = a + 3dP(X = 4) = a + 4dSince, they sum up to 1 $\Rightarrow P(X=2) = \frac{1}{5}$ Mean $= 0\left(\frac{1}{5} - 2d\right) + 1\left(\frac{1}{5} - d\right) + 2\left(\frac{1}{5}\right) + 3\left(\frac{1}{5} + d\right) + 4\left(\frac{1}{5} + 2d\right) = 2 + 10d = 2.5$ $\Rightarrow d = 0.05$ $E(X^{2}) = 0.1(0^{2}) + 0.15(1^{2}) + 0.2(2^{2}) + 0.25(3^{2}) + 0.3(4^{2}) = 8$ Variance $= 8 - (2.5)^2 = 1.75$

14.(C) Given $\alpha + \beta + 1 = 0$

(P) Only possibility is every row and column must be a permutation of $(1, \alpha, \beta)$ for row 1, we can arrange $1, \alpha, \beta$ in 3! ways.

Step 1: $\begin{bmatrix} 1 & \alpha & \beta \end{bmatrix}$

Now in column 1, the remaining 2 entries can be arranged in 2! Ways.

Step 2:
$$\begin{bmatrix} 1 & \alpha & \beta \\ \beta \\ \alpha \end{bmatrix}$$

Also after this, for the remaining 4 entries, only 1 arrangement is possible.

 $\begin{bmatrix} 1 & \alpha & \beta \\ \beta & 1 & \alpha \\ \alpha & \beta & 1 \end{bmatrix}$

Total matrices = $3! \times 2! = 12$

$$\Rightarrow$$
 (p) \rightarrow (2)

(Q) Note that *M* being symmetric

$$\Rightarrow \qquad C_j = 0 \,\,\forall_j \,\, \text{iff} \,\, R_j = 0 \,\,\forall j$$

Hence, we count similar to the previous case except that in step 2, we don't have 2! Options as symmetric nature of the matrics determines 1^{st} column from 1^{st} row.

 \Rightarrow 3!matrices \Rightarrow (Q) \rightarrow (4)

(S) (5) because $R_i = 0 \forall_i$

 \Rightarrow the operation $C_1 \rightarrow C_1 + C_2 + C_3$ will make the 1st column = 0

 \Rightarrow Determinant is always 0.

(R) M is skew symmetric of odd order

 $\Rightarrow |M|=0$

Hence, either no solution or infinitely many solution of $M\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a_{12} \\ 0 \\ -a_{23} \end{bmatrix}$

$$\Rightarrow (R) \rightarrow (3)$$

Note: Clearly: x = 0, y = 1, z = 0 is a possible solution.

Also we can confirm infinite solution using Cramer's rule with $\Delta_1 = \Delta_2 = \Delta_3 = 0 = \Delta$

15.(C)
$$P \rightarrow 4, Q \rightarrow 2, R \rightarrow 5, S \rightarrow 3$$

$$CP = r \implies \frac{|2 \times 0 - \alpha|}{\sqrt{5}} = r$$
$$\implies \alpha = \sqrt{5}r$$
$$\alpha + r = 5 + \sqrt{5}$$

	\Rightarrow	$\sqrt{5}r + r = 5 + \sqrt{5}$	\Rightarrow	$r = \sqrt{5}$		
	<i>.</i>	circle is $x^2 + (y-5)^2$	= 5			
	Solving with $y = 2x$					
	\Rightarrow	$x^2 + (2x - 5)^2 = 5$	\Rightarrow	$5x^2 - 20x + 25 = 5$		
	\Rightarrow	$5x^2 - 20x + 20 = 0$	\Rightarrow	$x^2 - 4x + 4 = 0$	\Rightarrow	x = 2
	<i>.</i>	$A_1 = (2, 4)$				
		$B_1 = (h, k)$				
		$\frac{h\!+\!2}{2}\!=\!0 \implies h\!=\!-\!2$				
		$\frac{k+4}{2} = 5 \implies k = 6$				
		B = (-2, 6)				
16. (C)	$P \rightarrow 3, Q \rightarrow 4, R \rightarrow 1, S \rightarrow 5$					
	Point on $L_1 = (\lambda - 11, 2\lambda - 21, 3\lambda - 29)$					
	Point on $L_2 = (3\mu - 16, 2\mu - 11, \mu\gamma - 4)$					
	A.T.P.	$3\mu - 16 = \lambda - 11$				
		$\Rightarrow \lambda = 3\mu - 5$				
	&	$2\lambda\!-\!21\!=\!2\mu\!-\!11 \Longrightarrow$	$2\mu = 2\lambda$	-10		
	\Rightarrow	$2\mu = 2(3\mu - 5) - 10$				
	\Rightarrow	$2\mu = 6\mu - 20$				
	\Rightarrow	$\mu = 5, \ \lambda = 10$				
	$R_1 = (-1, -1, 1)$ $5\lambda - 4 = 1 \Longrightarrow \lambda = 1$					
	$\vec{n} = \begin{vmatrix} \hat{i} \\ 3 \\ 1 \end{vmatrix}$	$\begin{vmatrix} \hat{j} & \hat{k} \\ 2 & 1 \\ 2 & 3 \end{vmatrix} = 4\hat{i} - 8\hat{j} + 4\hat{k}$				
	$\hat{n} = \frac{\hat{i} - \hat{i}}{\hat{i}}$	$\frac{-2\hat{j}+\hat{k}}{\sqrt{6}}$				
	$\overline{OR_1} = -$	$-\hat{i}-\hat{j}+\hat{k}$				
	$\overline{OR_1} \cdot \hat{n}$	$=\frac{-1+2+1}{\sqrt{6}}=\frac{2}{\sqrt{6}}=\frac{2}{\sqrt{6}}$	$\frac{2}{\sqrt{2} \times \sqrt{3}} =$	$=\frac{\sqrt{2}}{\sqrt{3}}$		

17.(C) x takes all values except between $\left| 0, \frac{1}{2} \right|$ but for $0 \le x \le \frac{1}{2}$, 3x - 1 takes all the values in the interval $\left| 0, \frac{1}{2} \right|$ Range = \mathbb{R} $f(x) = \begin{cases} x |x| \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0 & x = 0 \end{cases} \text{ and } g(x) = \begin{cases} 1-2x, & 0 \le 2x \le 1\\ 0, & \text{other wise} \end{cases}$ $g\left(\frac{1}{2} - x\right) = \begin{cases} 2x, & 0 \le x \le \frac{1}{2} \\ 0, & \text{other wise} \end{cases}$ $\Rightarrow \qquad g(x) + g\left(\frac{1}{2} - x\right) = \begin{cases} 1, & 0 \le x \le \frac{1}{2} \\ 0 & \text{other wise} \end{cases}$ when a = 0, b = 1, c = 0, d = 0**(P)** $h(x) = \begin{cases} 1, & 0 \le x \le \frac{1}{2} \\ 0 & \text{other wise} \end{cases}$ Range of h is $\{0, 1\}$ (**Q**) When a = 1, b = c = d = 0h(x) = f(x) which is differentiate on \mathbb{R} As $\lim_{h \to \infty} \frac{h^2 \sin\left(\frac{1}{h}\right)}{h} = \lim_{h \to \infty} -\frac{h^2 \sin\left(\frac{1}{h}\right)}{h} = 0$ **(R)** when a = b = d = 0 and c = 1 $h(x) = \begin{cases} 3x - 1, & 0 \le x \le \frac{1}{2} \\ x & \text{other wise} \end{cases}$ x takes all values except between $\left[0, \frac{1}{2}\right]$ but for takes all the values in the interval $\left[0, \frac{1}{2}\right]$ Range $= \mathbb{R}$ a = b = c = 0 and d = 1**(S)** $h(x) = g(x) = \begin{cases} 1 - 2x, & 0 \le x \le \frac{1}{2} \\ 0, & \text{other wise} \end{cases}$ Clearly, g is continuous and decreasing in $\left| 0, \frac{1}{2} \right| \Rightarrow g\left(\frac{1}{2}\right) \le g(x) \le g(0)$ $\Rightarrow 0 \le g(x) \le 1$ Range [0, 1]