IIT JEE | MEDICAL | FOUNDATION

Regional Mathematical Olympiad - 2023

Time: 3 hours

October 29, 2023

Instructions

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- \quad All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let N be the set of all positive integers and $S=\left\{(a, b, c, d) \in \mathrm{N}^{4} ; a^{2}+b^{2}+c^{2}=d^{2}\right\}$. Find the largest positive integer m such that m divides $a b c d$ for all $(a, b, c, d) \in S$.
2. Let ω be a semicircle with $A B$ as the bounding diameter and let $C D$ be a variable chord of the semicircle of constant length such that C, D lie in the interior of the $\operatorname{arc} A B$. Let E be a point on the diameter $A B$ such that $C E$ and $D E$ are equally inclined to the line $A B$. Prove that:
(a) The measure of $\angle C E D$ is a constant.
(b) The circumcircle of triangle $C E D$ passes through a fixed point.
3. For any natural number n, expressed in base 10 , let $s(n)$ denote the sum of all its digits. Find all natural numbers m and n such that $m<n$ and
$(s(n))^{2}=m$ and $(s(m))^{2}=n$.
4. Let Ω_{1}, Ω_{2} be two intersecting circles with centres O_{1}, O_{2} respectively. Let l be a line that intersects Ω_{1} at points A, C and Ω_{2} at points B, D such that A, B, C, D are collinear in that order. Let the perpendicular bisector of segment $A B$ intersect Ω_{1} at points P, Q; and the perpendicular bisector of segment $C D$ intersect Ω_{2} at point R, S such that P, R are on the same side of l. Prove that the midpoint of $P R, Q S$ and $O_{1} O_{2}$ are collinear.
5. Let $n>k>1$ be positive integers. Determine all positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$ which satisfy $\sum_{i=1}^{n} \sqrt{\frac{k a_{i}^{k}}{(k-1) a_{i}^{k}+1}}=\sum_{i=1}^{n} a_{i}=n$.
6. Consider a set of 16 points arranged in a 4×4 square grid formation. Prove that if any 7 of these points are coloured blue, then there exists an isosceles right-angled triangle whose vertices are all blue.
