

IIT JEE | MEDICAL | FOUNDATION

# SOLUTIONS

# Joint Entrance Exam | IITJEE-2025

24<sup>th</sup> JANUARY 2025 | Evening Shift

# MATHEMATICS

#### SECTION - 1

**1.(2)** The number of points where function is not continuous is 4 namely -1, 0, 1, 2

 $\Rightarrow m = 4$ 

And the number of points where function is non-differentiable is 4, namely -1, 0, 1, 2

 $\Rightarrow n = 4$ 

m + n = 8

3.(4)

**2.(1)** Assuming  $S_n$  is the sum to *n* terms.

 $S_{40} = 1030 \Rightarrow S_{12} = 57$ 

Set a be the first term and d be the common difference

$$\frac{40}{2} (2a + 39d) = 1030$$

$$4a + 78d = 103 \qquad \dots(A)$$

$$\frac{12}{2} (2a + 11d) = 57$$

$$12a + 66d = 57 \qquad \dots(B)$$
Solving (A) and (B)
$$a = \frac{-7}{2}, d = \frac{3}{2}$$

$$S_{30} = 15 \left(-7 + 29 \cdot \frac{3}{2}\right) \implies S_{10} = 5 \left(-7 + 9 \cdot \frac{3}{2}\right)$$

$$S_{30} - S_{10} = 515$$

$$f(x) = 2 \log(x - 2) - x^{2} + ax + 1$$
Obviously  $x > 2$ 

$$f'(x) = \frac{2}{x - 2} - 2x + a$$

$$f'(3) = 0$$

$$2 - 6 + a = 0 \implies a = 4$$

$$g(x) = (x - 1)^{3}(x - 2)^{2}$$

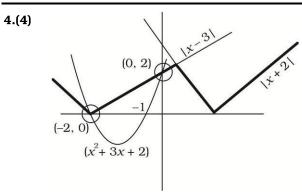
$$g'(x) = 3(x - 1)^{2}(x - 2)^{2} + 2(x - 1)^{3}(x - 2)$$

$$= (x - 1)^{2}(x - 2)(3(x - 2) + 2(x - 1))$$

$$= (x - 1)^{2}(x - 2)(5x - 8)$$

$$b = \frac{8}{5}, c = 2$$

$$100(a + b - c) = 100\left(4 + \frac{8}{5} - 2\right) = 100\left(2 + \frac{8}{5}\right) = 200 + 160 = 360$$



**5.(2)** The equation of the chord is  $T = S_1$ 

 $\frac{3x}{25} + \frac{y}{16} = \frac{9}{25} + \frac{1}{16}$ 

 $48x + 25y = 144 + 25 \quad \Rightarrow \quad 48x + 25y = 169$ 

$$6.(4) \quad 7 = 5 + \frac{1}{7}(5 + \alpha) + \frac{1}{7^2}(5 + 2\alpha) + \frac{1}{7^3}(5 + 3\alpha) + \dots \qquad \Rightarrow 2 = \frac{1}{7}(5 + \alpha) + \frac{1}{7^2}(5 + 2\alpha) + \frac{1}{7^3}(5 + 3\alpha) + \dots$$
$$\Rightarrow \frac{2}{7} = +\frac{1}{7^2}(5 + \alpha) + \frac{1}{7^3}(5 + 2\alpha) + \dots \qquad \Rightarrow 2 - \frac{2}{7} = \frac{1}{7}(5 + \alpha) + \frac{1}{7^2}\alpha + \frac{1}{7^3}\alpha + \dots$$
$$\Rightarrow 1 = \frac{\alpha}{7} + \frac{\alpha}{7^2} + \frac{\alpha}{7^3} + \dots = \frac{\frac{\alpha}{7}}{1 - \frac{1}{7}} \qquad \Rightarrow 1 = \frac{\alpha}{6}$$

1

$$\Rightarrow \alpha = 6$$

7.(2) Least value

$$\frac{\alpha - 5}{\frac{11}{2} - 6} = \frac{7 - \alpha}{4 - \frac{11}{2}}$$

$$\Rightarrow \frac{\alpha - 5}{-1} = \frac{7 - \alpha}{-3}$$
(4, 7) (11, 6)  
(11, 11)  
(6, 5) (10, 3)

$$\Rightarrow 3(\alpha-5)=7-\alpha$$

$$\Rightarrow 4\alpha = 22 \Rightarrow \alpha = \frac{11}{2}$$

<u>Max value</u>

$$\frac{\alpha - 3}{\frac{11}{2} - 10} = \frac{7 - \alpha}{4 - \frac{11}{2}}$$

$$\Rightarrow \frac{\alpha - 3}{-9} = \frac{7 - \alpha}{-3} \qquad \Rightarrow \alpha - 3 = 3(7 - \alpha)$$

$$\Rightarrow 4\alpha = 24$$

$$\Rightarrow \alpha = 6$$
Product =  $\frac{11}{2} \cdot 6 = 33$ 

#### **8.(1)** Possible cases

| A                       | В                          |  |  |
|-------------------------|----------------------------|--|--|
| 4 <i>B</i> , 1 <i>G</i> | 0B, 3G                     |  |  |
| $(7C_4 \cdot 3C_1)$     | (5 <i>C</i> <sub>3</sub> ) |  |  |
| 3B, 2G                  | 1B, 2G                     |  |  |
| $(7C_3 \cdot 3C_2)$     | $(6C_1 \cdot 5C_2)$        |  |  |
| 2B, 3G                  | 2B, 1G                     |  |  |
| $(7C_2 \ 3C_3)$         | $(6C_2 \cdot 5C_1)$        |  |  |

Adding all of these cases, we get number of ways to be 8925

9.(4) 
$$x^{2} f'(x) = 2x \cdot f(x) + 3$$
  
 $\Rightarrow \frac{f'(x)}{x^{2}} - \frac{2}{x^{3}} f(x) = \frac{3}{x^{4}}$   
 $\frac{d}{dx} \left( \frac{f(x)}{x^{2}} \right) = \frac{3}{x^{4}}$   
 $\Rightarrow \frac{f(x)}{x^{2}} = \frac{3}{-3} \cdot \frac{1}{x^{3}} + C$   
 $\frac{f(x)}{x^{2}} = -\frac{1}{x^{3}} + C$   
 $\Rightarrow f(x) = -\frac{1}{x} + Cx^{2}$   
 $f(1) = 4$   
 $\Rightarrow 4 = -1 + C$   $\Rightarrow C = 5$   
 $f(x) = -\frac{1}{x} + 5x^{2}$   $\Rightarrow$   $f(2) = -\frac{1}{2} + 20$   
 $2 f(2) = -1 + 40 = 39$   
10.(2)  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 

Total number of matrices possible =  $2^4 = 16$ For det(A) = 0 ad - bc = 0number of invertible matrices possible =  $3 \cdot 3 + 1 \cdot 1 = 10$ Probability of A being non-invertible matrix,  $P(E) = \frac{6}{16} = \frac{3}{8}$  **11.(2)**  $\vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}$   $\vec{b} = \vec{a} \times (\hat{i} - 2\hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 2 \\ 1 & 0 & -2 \end{vmatrix} = 2\hat{i} + 8\hat{j} + \hat{k}$   $\vec{c} = \vec{b} \times \hat{k} = -2\hat{j} + 8\hat{i}$ Projection of  $(\vec{c} - 2\hat{j})$  on  $\vec{a} = (\vec{c} - 2\hat{j}) \cdot \frac{(3\hat{i} - \hat{j} + 2\hat{k})}{\sqrt{14}} = (8\hat{i} - 4\hat{j}) \cdot \frac{(3\hat{i} - \hat{j} + 2\hat{k})}{\sqrt{14}} = \frac{24 + 4}{\sqrt{14}} = \frac{28}{\sqrt{14}} = 2\sqrt{14}$ Projection  $= 2\sqrt{14}$ 

**12.(2)** 
$$A = 2^{n-1}C_{11}$$
  
 $2 \cdot 2^{n-1}C_{29} = 5 \cdot 2^{n-1}C_{11}$   
 $2 \cdot 2^{n-1}C_{29} = 5 \cdot 2^{n-1}C_{11}$   
 $2 \cdot 2(2n-1)!$   
 $2(2n-2)! = 13 \cdot 14 \cdot 15 \dots 29 \cdot 30$   
 $2n-12 = 30 \Rightarrow n = \frac{42}{2} = 21$   
**13.(4)** The latus rectum is  $= \frac{4\left|\frac{3}{2} + 6\right|}{\sqrt{5}} = \frac{30}{\sqrt{5}}$   
Equation of axis  
 $2x - 4 + C = 0$   
 $3 - 3 + C = 0$   
The parabola is  
 $\left(\frac{2x - y^2}{\sqrt{5}}\right)^2 = \frac{30}{35} \frac{|x + 2y|}{\sqrt{5}}$   
 $\left(\frac{2x - y}{\sqrt{5}}\right)^2 = \frac{30}{35} \frac{|x + 2y|}{\sqrt{5}}$   
 $\left(\frac{2x - y}{\sqrt{5}}\right)^2 = \frac{30}{35} \frac{|x - 2|}{\sqrt{5}}$   
 $\left(1 - e^x\right)dx$   
 $\left(\frac{1}{2}\right)$   
 $\left(\frac{1}{2}\right)^2 = \frac{1}{35} \frac{|x - 2|}{\sqrt{5}}$   
 $\left(\frac{1}{2}\right)^2 = \frac{1}{35} \frac{|x - 2|}{\sqrt{5}}$   
 $\left(\frac{1}{2}\right)^2 = \frac{1}{35} \frac{|x - 2|}{\sqrt{5}} \frac$ 

VMC | JEE Main - 2025

**16.(4)** For the equations to have infinitely many solution  $4(x+2y-3z-2)+5(2x+\lambda y+5z-5)=14x+3y+\mu z-33$  $\Rightarrow 8+5\lambda=3 \Rightarrow \lambda=-1$  $-12 + 25 = \mu$  $\Rightarrow \mu = 13$  $\lambda + \mu = 12$ **17.(1)**  $\lim_{x \to 0} f(x) = \begin{vmatrix} a+1 & 1 & b \\ a & 2 & b \\ a & 1 & b+1 \end{vmatrix} = a+b+2$  $(\lambda + \mu + \nu)^2 = 16$ **18.(1)**  $\tan^{-1}\left(\frac{\alpha-\beta}{1+\alpha\beta}\right) + \tan^{-1}\left(\frac{\beta-\gamma}{1+\beta\gamma}\right)$  $\pi + \tan^{-1}\left(\frac{\gamma - \alpha}{1 - \gamma \alpha}\right) = \pi$ **19.(2)** Centroid  $=\left(\frac{\vec{p}+\vec{q}+\vec{r}}{3}\right)$ Orthocentre =  $\left(\frac{\vec{p} + \vec{q} + \vec{r}}{4}\right)$ Circumcentre =  $\alpha \vec{p} + \beta \vec{q} + \gamma \vec{r}$  $\begin{array}{c} 2 & 1 \\ 0 & G & C \end{array}$  $\frac{2(\alpha \vec{p} + \beta \vec{q} + \gamma \vec{r}) + \left(\frac{\vec{p} + \vec{q} + \vec{r}}{4}\right)}{3}$  $=\frac{(\vec{p}+\vec{q}+\vec{r})}{3} \qquad \Rightarrow \ 2\alpha+\frac{1}{4}=1 \quad \Rightarrow \ 2\beta+\frac{1}{4}=1 \quad \Rightarrow \ 2\gamma+\frac{1}{4}=1$  $\alpha + 2\beta + 5\gamma = 8\alpha = 3$ Assume  $\vec{p}, \vec{q}, \vec{r}$  are linearly independent

**20.(1)** 
$$f(x) = \frac{2^{x} - 2^{-x}}{2^{x} + 2^{-x}}$$

Say  $2^{x} = t$ 

$$t \in (0,\infty) = \frac{t^2 - 1}{t^2 + 1} = 1 - \frac{2}{t^2 + 1}$$

One-one and odd function so range (-1, 1)

# SECTION - 2

| 21.(957 | 7) $(2\lambda+1, 3\lambda-1, 4\lambda)$                                                                                                          |  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|         | $2(2\lambda - 6) + 3(3\lambda + 1) + 4(4\lambda - 5) = 0$                                                                                        |  |  |  |  |  |  |
|         | $29\lambda - 29 = 0$                                                                                                                             |  |  |  |  |  |  |
|         | $\lambda = 1$                                                                                                                                    |  |  |  |  |  |  |
|         | (3, 2, 4)                                                                                                                                        |  |  |  |  |  |  |
|         | Image = $P \equiv (-1, 6, 3)$                                                                                                                    |  |  |  |  |  |  |
|         | $R = (5,5,8) \qquad \Rightarrow \qquad Q = (7,-2,5)$                                                                                             |  |  |  |  |  |  |
|         | $(Area)^2 = 957$                                                                                                                                 |  |  |  |  |  |  |
| 22.(1)  | $2\cos x \frac{dy}{dx} + 4y\sin x = \sin 2x \implies \cos x \frac{dy}{dx} + 2y\sin x = \sin xGx$                                                 |  |  |  |  |  |  |
|         | $\sec^2 x \frac{dy}{dx} + 2\tan x \sec^2 x)y = \tan x \sec x \implies \frac{d}{dx}(y \sec^2 x) = \frac{d}{dx}(\sec x)$                           |  |  |  |  |  |  |
|         | $y \sec^2 x = \sec x + C \qquad \Rightarrow \qquad y = C \cos^2 x + \cos x$                                                                      |  |  |  |  |  |  |
|         | $y\left(\frac{\pi}{3}\right) = \frac{C}{4} + \frac{1}{2} = 0$                                                                                    |  |  |  |  |  |  |
|         | C = -2                                                                                                                                           |  |  |  |  |  |  |
|         | $y = \cos x - 2\cos^2 x$                                                                                                                         |  |  |  |  |  |  |
|         | $\frac{dy}{dx} = -\sin x + 4\cos x \sin x$                                                                                                       |  |  |  |  |  |  |
|         | $y\left(\frac{\pi}{4}\right) + y'\left(\frac{\pi}{4}\right) = 1$                                                                                 |  |  |  |  |  |  |
| 23.(39  | 2) $2^2 \times 98_{C_1} = 392$                                                                                                                   |  |  |  |  |  |  |
| 24.(55) | $e^2 = 1 \pm \frac{b^2}{a} = 15\sqrt{2}$ $\Rightarrow$ $e^2 = 1 \pm \frac{b^2}{a^2} = \frac{5}{2}$ $\Rightarrow$ $\frac{b^2}{a^2} = \frac{3}{2}$ |  |  |  |  |  |  |
|         | Similarly $\frac{2B^2}{A} = 12\sqrt{5}$                                                                                                          |  |  |  |  |  |  |
|         | $e_2^2 = 1 + \frac{A^2}{B^2}$ and it is given that                                                                                               |  |  |  |  |  |  |
|         | $2a \cdot 2B = 100\sqrt{10}$                                                                                                                     |  |  |  |  |  |  |
|         | Solve to get $25e_2^2 = 55$                                                                                                                      |  |  |  |  |  |  |
|         |                                                                                                                                                  |  |  |  |  |  |  |

Vidyamandir Classes: Innovating for Your Success

$$25.(16) \int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} dx = \int \frac{2(x^2 + x + 1) + 3x + 7}{\sqrt{x^2 + x + 1}} dx = 2 \int \sqrt{x^2 + x + 1} dx + \int \frac{(3x + 7)dx}{\sqrt{x^2 + x + 1}} dx = \frac{1}{2} \int \frac{3}{2} (2x + 1) + \left(7 - \frac{3}{2}\right)}{\sqrt{x^2 + x + 1}} dx$$
$$= \frac{7}{2} \sqrt{1 + x + x^2} + x \sqrt{1 + x + x^2} + \frac{25}{4} \sin^{-1} \left(\frac{1 + 2x}{\sqrt{3}}\right)$$
$$\alpha + 2\beta = \frac{7}{2} + \frac{25}{2} = 16$$

# PHYSICS

# <u>SECTION – 1</u>

$$26.(1) \quad \left(1 - \frac{2x}{x_0}\right) = \cos t \implies x_{(L)} = \frac{x_0}{2} (1 - \cos t)$$
$$\frac{dx}{dt} = v = \frac{x_0}{2} (+\sin t)$$
$$v = \frac{x_0}{2} \sin t$$
$$v = \frac{x_0}{2} \sqrt{1 - \left(\frac{1 - 2x}{x_0}\right)^2} \implies v^2 = \frac{x_0^2}{4} \left(1 - 1 - \frac{4x^2}{x_0^1} + \frac{4x}{x_0}\right) \qquad = \frac{x_0^2}{4} \left(-4\frac{x^2}{x_0^2} + \frac{4x}{x_0}\right)$$

Coefficient of x is –ve hence

**27.(3)** 
$$I_B$$
 = bigger circle = zero as  $i_{\text{enclosed}}$  zero

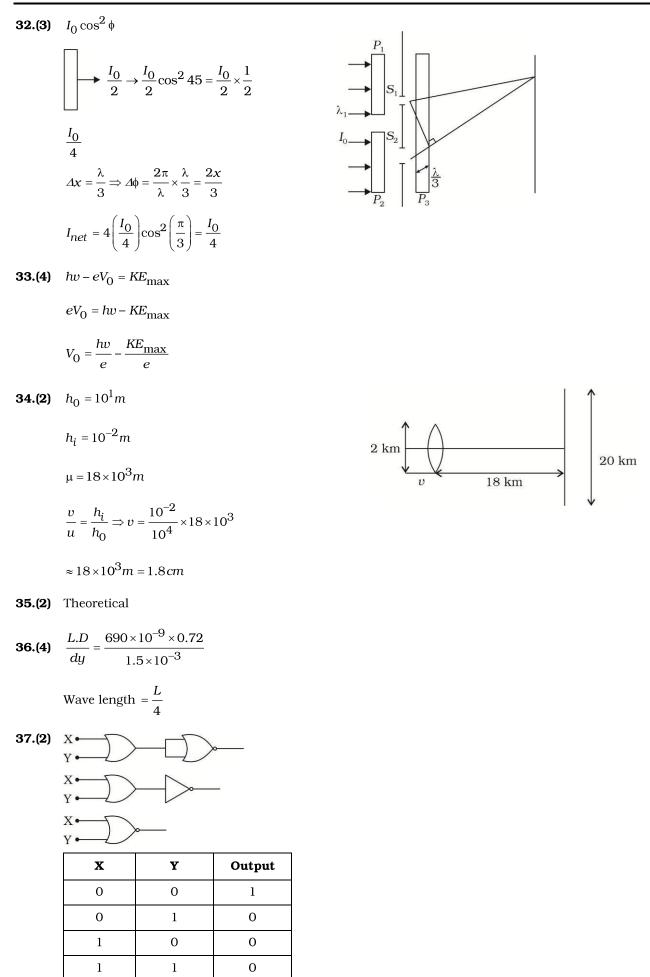
$$I_B \frac{n \times q \times \omega}{2\pi}$$
$$I_A - I_B = \frac{Nq\omega}{2\pi}$$

**28.(1)** Theoretical

**29.(3)** 
$$Q = \Delta U + W \qquad \Rightarrow \qquad Q = \frac{\pi \times (100)^2}{2}$$

**30.(1)** 
$$\frac{kg^2}{r^2} = 9 \times 10^{-3}$$
  
 $\frac{9 \times 10^9 \times (2 \times 10^{-8})^2}{r^2} = 9 \times 10^{-3}$   
**31.(2)**  $r = 5t^2\hat{i} - 5t\hat{j}$ 

$$\frac{d\vec{r}}{dt} = 10t\hat{i} - 5\hat{j} \qquad \Rightarrow \qquad \vec{v} = 20\hat{i} - 5\hat{j}$$
$$|\vec{v}| = \sqrt{400 + 25}$$



|        | Vidyamandir Classes: Innovating for Your Success                                                                                                                                                                                                                                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38.(4) | $\sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2}  \Rightarrow \qquad \sqrt{2\frac{a^2}{4}} = \frac{a}{\sqrt{2}} \qquad \Rightarrow \qquad \sqrt{\left(\frac{a}{\sqrt{2}}\right)^2 + \left(\frac{a}{\sqrt{2}}\right)^2} = \sqrt{\frac{a^2}{2} + \frac{a^2}{2}}$        |
|        | Case-I                                                                                                                                                                                                                                                                               |
|        | $4\frac{Kq_0^2}{a} + \frac{Kq_0^2}{\sqrt{2}a} \times 2$                                                                                                                                                                                                                              |
|        | $\frac{Kq_0^2}{q} \Big( 4 + \sqrt{2} \Big)$                                                                                                                                                                                                                                          |
|        | Case-2                                                                                                                                                                                                                                                                               |
|        | $\frac{Kq_0^2}{a} \times \sqrt{2} \times 4 + \frac{Kq_0^2}{a} \times 2 \qquad \Rightarrow \qquad \frac{Kq_0^2}{a} \left(4\sqrt{2} + 2\right)$ $\frac{Kq_0^2}{a} \left\{4\sqrt{2} + 2 - 4 = \sqrt{2}\right\} \qquad \Rightarrow \qquad \frac{Kq_0^2}{a} \left\{3\sqrt{2} - 2\right\}$ |
|        | $\frac{Kq_0^2}{a} \Big\{ 4\sqrt{2} + 2 - 4 = \sqrt{2} \Big\} \qquad \Rightarrow \qquad \frac{Kq_0^2}{a} \Big\{ 3\sqrt{2} - 2 \Big\}$                                                                                                                                                 |
| 39.(2) | $T.KE = \frac{1}{2}mv^2$                                                                                                                                                                                                                                                             |
|        | $R.KE = \frac{1}{2}I_{com}\omega^2$                                                                                                                                                                                                                                                  |
|        | $=\frac{1}{2} \times \frac{2mR^2}{5} \times \left(\frac{V}{R}\right)^2$                                                                                                                                                                                                              |
|        | $\frac{mV^2}{5}$                                                                                                                                                                                                                                                                     |
| 40.(2) | $E^2 = pc^2 + m^2 c^4$                                                                                                                                                                                                                                                               |
| 41 (4) | $I_{com} = KMR^2$                                                                                                                                                                                                                                                                    |
|        |                                                                                                                                                                                                                                                                                      |
|        | $S = \frac{1}{2}at^2$ $\Rightarrow$ $a = \frac{g\sin\theta}{1 + \frac{I_{com}}{MR^2}}$ $\Rightarrow$ $a = \frac{g\sin\theta}{1 + k}$                                                                                                                                                 |
|        | Solid sphere $k = \frac{2}{5}$                                                                                                                                                                                                                                                       |
|        | Hollow sphere $k = \frac{2}{3}$                                                                                                                                                                                                                                                      |
|        | $a_{ss} > a_{hs} \Rightarrow t_{(ss)_1} < t_{(hs)_2}$                                                                                                                                                                                                                                |
| 42.(2) | $-\frac{dT}{at} = K(T - T_0) \qquad \Rightarrow \qquad -\frac{164}{4} = K(32 - 16)$                                                                                                                                                                                                  |
|        | $K = \frac{4}{16} = \frac{1}{4}$                                                                                                                                                                                                                                                     |
|        | $\frac{(24-\tau')}{4} = \frac{1}{4} \left( \frac{24+\tau'}{2} - 16 \right)$                                                                                                                                                                                                          |
|        | $T'=rac{56^\circ}{3}$                                                                                                                                                                                                                                                               |

VMC | JEE Main - 2025

**43.(2)** 
$$^{\circ}C = \frac{5}{9} \times F^{\circ} - 32 \times \frac{5}{9}$$
  
 $y = mx + C$   
**44.(2)**  $F = q(\vec{V} \times \vec{B})$   
 $\vec{v} \parallel B$   
 $F = 0$ 

**45.(4)**  $\times PV^{r} = \text{const}$ 

PV = nRT

Free expansion is fast and irreversible

#### SECTION - 2

**46.(250)**  $\mu_0 n i = B$ 

$$q\left(\vec{V} \times \vec{B}\right) = \frac{mv^2}{R} \qquad \Rightarrow \qquad v = \frac{qBR}{m}$$

$$T = \frac{2\pi R}{v} = \frac{2\pi Rm}{qBR} = \frac{2\pi m}{Bq} \qquad \Rightarrow \qquad 75 \times 10^{-9} = \frac{2\pi m}{\mu_0 niq}$$

**47.(43)** 
$$B = \frac{P}{\left(-\frac{dV}{V}\right)} \Rightarrow 2.15 \times 10^9 = \frac{P}{0.002}$$

**48.(9)** 
$$\frac{GM}{R^2} = g$$
  $4\frac{GM}{\left(\frac{D}{3}\right)^2} = 9g$   $\Rightarrow \frac{GM}{\left(\frac{D}{2}\right)^2} = g$   $\Rightarrow g = \frac{GM}{D^2} \times 4$ 

**49.(5)** Power = 
$$\frac{\text{Energy}}{\text{time}}$$
  $\frac{P_1}{P_2} = 2$ 

$$\frac{P_1 = 2 \times 10^{15} \times \frac{h \times c}{600 \times 10^{-9}}}{P_2 = n \times \frac{h \times c}{300 \times 10^{-9}}} \qquad \Rightarrow \qquad \frac{P_1}{P_2} = 2 = \frac{2 \times 10^{15}}{n} \times \frac{1}{2} \qquad \Rightarrow n = 5 \times 10^{14}$$

**50.(36)**  $\frac{3}{\pi} \times 2\pi rad/\sec$ 

6 rad/sec

$$T\sin\theta = \frac{mv^2}{R}$$

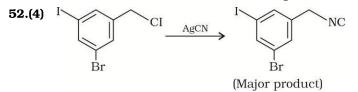
 $T\cos\theta = mg$ 

$$T \times \frac{R}{L} = m \times \frac{w^2 R^2}{R}$$
$$T = mw^2 L = 36 L$$

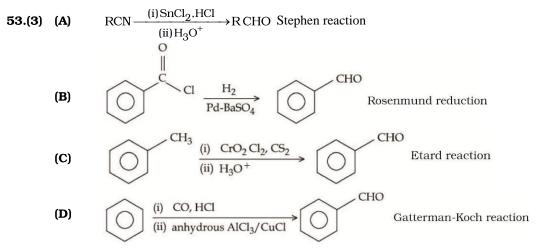
# CHEMISTRY

## SECTION - 1

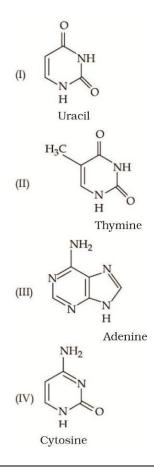
**51.(3)** Activating groups like  $-OCH_3$ ,  $-NHCOCH_3$  and  $OH^{\ominus}$  are ortho and para directing groups. Deactivating groups like -CN and  $-SO_3H$  are meta directing group.



Nucleophilic substitution at  $sp^3$  carbon is faster than nucleophilic substitution at  $sp^2$  carbon.



54.(2)



### Vidyamandir Classes: Innovating for Your Success

**55.(4)** The two oxygen-oxygen bond lengths in the ozone molecule are identical (128 pm) and the molecule is angular as expected with a bond angle of about 117°. It is a resonance hybrid of two main forms:

.0: ↔:0.

|        | %Composition |                   |      | Simplest ratio               |
|--------|--------------|-------------------|------|------------------------------|
|        | C = 54.2%    | $\frac{54.2}{12}$ | 4.5  | $\frac{4.5}{2.28}\approx 2$  |
| 56.(2) | H = 9.2%     | $\frac{9.2}{1}$   | 9.2  | $\frac{9.2}{2.28} \approx 4$ |
|        | 0 = 36.6%    | $\frac{36.6}{16}$ | 2.28 | $\frac{2.28}{2.28} = 1$      |

Empirical formula:  $C_2H_4O$ 

Molar mass = 132 g/mol

Molecular formula :  $C_6H_{12}O_3$ 

- **57.(1)** Concentration of  $H_2(g)$  and  $I_2(g)$  will decrease with time and concentration of HI will increase till equilibrium.
- **58.(2)** Weak field ligand and high spin complex.
- **59.(4)** More the number of equivalents neutralized, more will be the amount of energy released. Hence the temperature rise is more.

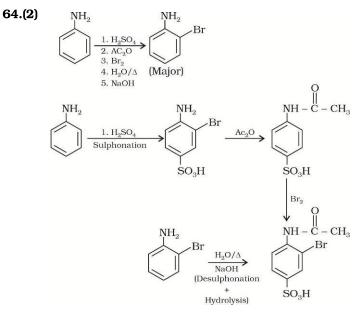
60.(1)  $Ti^{3+} = 3d^1 \quad 1.73$   $V^{2+} = 3d^3 \quad 3.87$   $Ni^{2+} = 3d^8 \quad 2.84$  $Sc^{3+} = 3d^\circ \quad 0.00$ 

Spin only magnetic moment  $\mu = \sqrt{n(n+2)}$  B.M

**61.(1)** 
$$S(g) + \frac{3}{2}O_2(g) \rightarrow SO_3(g) \quad \Delta H = -2x \text{ Kcal}$$
  
 $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g) \quad \Delta H = -y \text{ Kcal}$   
 $S(g) + O_2(g) \rightarrow SO_2(g) \quad \Delta H = y - 2x \text{ Kcal}$ 

**62.(4)** CoS 
$$\xrightarrow{\text{aqua-regia}} \xrightarrow{(1) \text{KNO}_2 / \text{NH}_4 \text{OH}} \xrightarrow{(2) \text{CH}_3 \text{COOH}} \text{K}_3[\text{CO(NO}_2)_6]$$
  
Yellow ppt

63.(4) Group 13 (Boron)



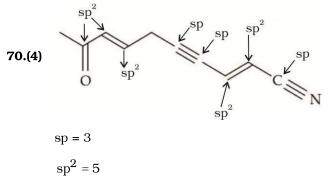
**65.(1)**  $t_{1/2}$  is independent of initial concentration.

$$\ln\frac{[R]}{[R]_0} = \frac{-K}{2.303}(t)$$

**66.(3)** For single electron species;

 $3P_x, 3d_{x^2-y^2}$  and  $3d_{z^2}$  orbitals have lowest energy

- **67.(4)** [Ni(H<sub>2</sub>O)<sub>6</sub>]Cl<sub>2</sub>  $\xrightarrow{en}$  Pale Blue  $\xrightarrow{en}$  Blue  $\xrightarrow{en}$  Violet Green
- Si Ge 68.(4) First I.E : 786 761 (kJ / mol)
- **69.(3)**  $E^{\circ}_{Cr/Cr^{+3}}$  = +0.74 V strongest reducing agent.



#### <u>SECTION – 2</u>

**71.(3)** Hydrocarbon : Molar mass = 80 g/mol.

C: 90% = 72 g

H : 10% = 8 g

$$C_6H_8$$

Degree of unsaturation = (6 + 1) - (8/2) = 7 - 4 = 3

**72.(255)** % of Bromine =  $\frac{80 \times 0.15}{188 \times 0.25} \times 100 = 25.53$ 

**73.(20)**  $K = \sqrt{\frac{K_1 \cdot K_3}{K_2}}$ 

Overall energy of activation  $=\frac{1}{2}(60) + \frac{1}{2}(10) - \frac{1}{2}(30) = 30 + 5 - 15 = 20 \text{ kJ/mol}$ 

**74.(4)** 5-Phenyl pent-4-en-2-ol

$$\begin{array}{ccc} OH & H & H \\ | & | & | \\ H_{3}C - CH - CH_{2}C = C \\ 2 & 3 & 4 & 5 \end{array} \right)$$

Number of stereocentres = 2

Possible isomers 
$$= 2^2 = 4$$

```
75.(75) MX_2 \rightarrow M^{2+} + 2X^{-} n = 3
i = \frac{65.6}{164} = 2.5
i = 1 + (n - 1)\alpha
i = 1 + 2\alpha
2.5 = 1 + 2\alpha
\alpha = 0.75
=75\%
```