

IIT JEE | MEDICAL | FOUNDATION

SOLUTIONS

Joint Entrance Exam | IITJEE-2025

23rd JANUARY 2025 | Evening Shift

MATHEMATICS

SECTION - 1

N

Now,

$$g(x) = -x^{3} \cos x + 3x^{2} \sin x + 6x \cos x - 6 \sin x$$

$$\Rightarrow \quad g'(x) = -3x^{2} \cos x + x^{3} \sin x + 6\cos x - 6\cos x$$

$$\Rightarrow \quad g'(x) = -3x^{2} \cos x + x^{3} \sin x$$

$$\Rightarrow \quad g'\left(\frac{\pi}{2}\right) = \frac{\pi^{3}}{8} \text{ and } g\left(\frac{\pi}{2}\right) = \frac{3\pi^{2}}{4} - 6$$
So,
$$8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \pi^{3} + 6\pi^{2} - 48$$
Hence, $\alpha + \beta - \gamma = 55$
7.(3) Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

$$A\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} b \\ e \\ h \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$b = e = 0, h = 1$$

$$A\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 4a + b + 3c \\ 4d + e + 3f \\ 4g + h + 3i \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 4a + 3f = 1 \\ 4g + 3f = 0 \\ 4g + 3f = 0 \\ 4g + 3f = 0 \end{bmatrix}$$

$$A\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 2a + b + 2c = 1 \\ 2d + e + 2f = 0 \\ 2g + h + 2i = 0$$

By *
$$d = -f$$

$$4(-f) + 3f = 1 \Longrightarrow f = -1 \Longrightarrow a_{23} = -1$$

8.(4) Let $z = 1(\cos \theta + i \sin \theta); -\pi < \theta \le \pi$

$$\begin{vmatrix} \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \end{vmatrix} = 1$$

$$\Rightarrow \qquad \left| \frac{z^2}{|z|^2} + \frac{(\overline{z})^2}{|z|^2} \right| = 1 \qquad \Rightarrow \qquad \left| z^2 + (\overline{z})^2 \right| = 1$$

$$\Rightarrow \qquad \left| \cos 2\theta + i \sin 2\theta + \cos 2\theta - i \sin 2\theta \right| = 1$$

$$\Rightarrow \qquad \left| \cos 2\theta \right| = \frac{1}{2} \text{ where } 2\theta \in \left(-2\pi, 2\pi \right]$$

$$\Rightarrow \qquad \cos 2\theta = \pm \frac{1}{2}; 2\theta \in \left(-2\pi, 2\pi \right]$$

$$\Rightarrow \qquad 8 \text{ solutions}$$

VMC | JEE Main - 2025

...(1)

...*

9.(4)
$$\lim_{x \to \infty} \left(\frac{2x^2 - 3x + 5}{3x^2 + 5x + 4} \right) \left(\frac{3x - 1}{3x + 2} \right)^{x/2}$$
Now,
$$\lim_{x \to \infty} \left(\frac{2x^2 - 3x + 5}{3x^2 + 5x + 4} \right) \left[\left(\frac{\infty}{\infty} \right) form \right]$$

$$= \lim_{x \to \infty} \frac{2 - \frac{3}{x} + \frac{5}{x^2}}{3 + \frac{5}{x} + \frac{4}{x^2}} = \frac{2}{3} \text{ and } \lim_{x \to \infty} \left(\frac{3x - 1}{3x + 2} \right)^{x/2} (1^{\infty}) \text{ form}$$

$$= e^{\lim_{x \to \infty} \frac{x}{3} + \frac{5}{x} + \frac{4}{x^2}} = \frac{2}{3} \text{ and } \lim_{x \to \infty} \left(\frac{3x - 1}{3x + 2} \right)^{x/2} (1^{\infty}) \text{ form}$$

$$= e^{\lim_{x \to \infty} \frac{x}{2}} \left(\frac{3x - 1}{3x + 2} - 1 \right)$$

$$= e^{\frac{1}{x \to \infty}} \frac{x}{2} \left(\frac{-3}{3x + 2} \right) = e^{\lim_{x \to \infty} \left(\frac{-3}{2} \times \left(\frac{1}{3 + \frac{2}{x}} \right) \right)}$$

$$= e^{-\frac{3}{2} \times \frac{1}{3}} = \frac{1}{\sqrt{e}}$$
So,
$$\frac{2}{3} \times \frac{1}{\sqrt{e}} = \frac{2}{3\sqrt{e}}$$
10.(2) $S.D. = \left| \frac{\left(\overline{a}_2 - \overline{a}_1 \right) \cdot \left(\overline{b}_1 \times \overline{b}_2 \right) \right|}{\left| \overline{b}_1 \times \overline{b}_2 \right|} \right|$

$$= \frac{3}{\sqrt{5}}$$

$$\Rightarrow (S.D.)^2 = \frac{4}{5} = \frac{m}{n} \Rightarrow m + n = 9$$
11.(1)
$$A(x_1, y_1) = \frac{x^2}{\sqrt{4}} + \frac{y^2}{2} = 1$$

$$(1, 1/2)$$

 $B(x_2, y_2)$

Equation of chord AB is $T = S_l$

$$\Rightarrow \qquad x+y = \frac{3}{2} \Rightarrow y = \frac{3}{2} - x$$

On solving with ellipse $\frac{x^2}{4} + \frac{1}{2}\left(\frac{3}{2} - X\right)^2 = 1 \implies 6x^2 - 12x + 1 = 0$

$$\Rightarrow \qquad x_1 + x_2 = 2 \text{ and } x_1 x_2 = \frac{1}{6}$$

$$\Rightarrow \qquad (x_2 - x_1)^2 = (x_1 + x_2)^2 - 4x_1 x_2 = 4 - \frac{4}{6} = \frac{10}{3}$$
Now,
$$y = \frac{3}{2} - x$$

$$(y_2 - y_1) = -1(x_2 - x_1)$$

$$\Rightarrow \qquad (y_2 - y_1)^2 = (x_2 - x_1)^2 = \frac{10}{3}$$

$$AB = \sqrt{\frac{10}{3} + \frac{10}{3}} = \frac{2\sqrt{5}}{\sqrt{3}} = \frac{2\sqrt{15}}{3}$$
12.(1)

P (no side common) = 1 - P (one side common)

$$=1-\frac{3\times 4\times 2}{16}_{C_2}=1-\frac{24\times 2}{16\times 15}=1-\frac{1}{5}=\frac{4}{5}$$

13.(3)
$$I = \int_{0}^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx \qquad \dots (1)$$

$$I = \int_{0}^{\pi/2} \frac{\cos^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx \qquad \dots (2)$$

$$2I = \int_{0}^{\pi/2} 1 \, dx = \frac{\pi}{2} \qquad \Rightarrow \qquad I = \frac{\pi}{4}$$

Now, let
$$I_1 = \int_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$$
 ...(3)

$$I_1 = \int_0^{\pi/2} \frac{(\pi/2 - x)\cos x \sin x}{\sin^4 x + \cos^4 x} \, dx \qquad \dots (4)$$

Add (3) and (4)

$$2I_1 = \frac{\pi}{2} \int_0^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx$$
$$I_1 = \frac{\pi}{4} \int_0^{\pi/2} \frac{\tan x \sec^2 x}{1 + \tan^4 x} \, dx$$

Let $\tan^2 x = t$

$$2\tan x \sec^2 x dx = dt$$

$$\tan x \sec^2 x \, dx = \frac{dt}{2}$$

$$I_1 = \frac{\pi}{8} \int_0^\infty \frac{dt}{1+t^2} \quad \Rightarrow \qquad I_1 = \frac{\pi}{8} \left[\tan^{-1} t \right]_0^\infty \qquad \Rightarrow \qquad I_1 = \frac{\pi^2}{16}$$

14.(2) Given question of parabola $\Rightarrow y^2 = 4x$

Let the point (a, 0) be P and given PQ = 4

Where coordinates of Q be $(t^2, 2t)$

Also, PQ is normal to parabola and we know equation of normal in parametric form:

$$y + tx = 2t + t^3$$

Now point P will satisfy this equation. Hence, we get at = $2t + t^3$

$$\Rightarrow \qquad a = 2 + t^2 \qquad \dots (1)$$

$$\therefore \qquad P(2+t^2,0)$$

:. By distance formula,
$$PQ = \sqrt{(2+t^2-t^2) + (0-2t)} = 4$$

$$\Rightarrow$$
 4+4 $t^2 = 16 \Rightarrow t^2 = 3$

$$\therefore$$
 $a = 2 + t^2$ {by equation (1)}

$$\Rightarrow a = 2 + 3 = 5$$

And focus of parabola \Rightarrow (1, 0)

So, (1, 0) and (5, 0) are diameter's end point when circle passes through these points and having centre on axis of parabola i.e., x-axis.

 $\Rightarrow \qquad (x-1)(x-5)+(y-0)(y-0)=0$

$$\Rightarrow x^2 + y^2 - 6x + 5 = 0$$

15.(4) We know point *P*(1, 4, 0) and line $\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3} \Rightarrow L_2$

Now line parallel to L₂ and passing through (1, 4, 0) $\Rightarrow \frac{x-1}{1} = \frac{y-4}{2} = \frac{z-0}{3} \Rightarrow L_3$

Now, point of intersection of L₃ with line $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4} \Rightarrow L_1$ is given by Q.

So, let
$$\frac{x-1}{1} = \frac{y-4}{2} = \frac{z-0}{3} = \lambda$$
 and $\frac{x-2}{2} = \frac{y-6}{3} = \frac{2-3}{4} = \gamma$

 $\Rightarrow \qquad x = \lambda + 1, y = 2\lambda + 4, z = 3\lambda \text{ and } x = 2\gamma + 2, y = 3\gamma + 6, z = 4\gamma + 3$

- $\Rightarrow \qquad \lambda + 1 = 2\gamma + 2 \text{ and } 2\lambda + 4 = 3\gamma + 6$
- $\Rightarrow \qquad \lambda = 2\gamma + 1 \quad \Rightarrow \quad 2(2\gamma + 1) + 4 = 3\gamma + 6$

$$\Rightarrow \qquad 4\gamma + 2 + 4 = 3\gamma + 6 \Rightarrow \gamma = 0$$

Hence point of intersection i.e. Q = (2, 6, 3)

... Required distance =
$$PQ = \sqrt{(2-1)^2 + (6-4)^2 + (3-0)^2} = \sqrt{14}$$
.

$$\begin{aligned} \mathbf{16.(1)} \quad \text{Given} : y = \left(x - y\frac{dx}{dy}\right) \sin\left(\frac{x}{y}\right) : y > 0 \text{ and } x(1) = \frac{\pi}{2}. \\ \Rightarrow \quad y = \left(\frac{xdy - ydx}{dy}\right) \sin\left(\frac{x}{y}\right) \\ \Rightarrow \quad y dy = (xdy - ydx) \sin\left(\frac{x}{y}\right) \\ \Rightarrow \quad \frac{ydy}{y^2} = \left(\frac{xdy - ydx}{y^2}\right) \left(\sin\frac{x}{y}\right) \\ \Rightarrow \quad \frac{dy}{y} = \left(\frac{xdy - ydx}{y^2}\right) \left(\sin\frac{x}{y}\right) \\ \text{We know } \Rightarrow \frac{dy}{y} = \sin\left(\frac{x}{y}\right) d\left(-\frac{x}{y}\right) \\ \Rightarrow \quad \ln y = \cos\frac{x}{y} + C \\ \text{Now.} \quad x(1) = \frac{\pi}{2} \Rightarrow \ln 1 = \cos\left(\frac{\pi}{2}/1\right) + C \\ \Rightarrow \quad 0 = 0 + C \Rightarrow C = 0 \\ \Rightarrow \quad \ln y = \cos\frac{x}{y} \\ \text{Now at } y = 2 \Rightarrow \ln 2 = \cos\frac{x}{2} \qquad \dots(1) \\ \text{But} \quad \cos x(2) = ? \qquad \Rightarrow \qquad \cos x = 2\cos^2\frac{x}{2} - 1 \\ \Rightarrow \quad \cos x = 2(\ln 2)^2 - 1 \text{ (By (i))} \end{aligned}$$
$$\begin{aligned} \mathbf{17.(1)} \quad \underbrace{P \qquad A \qquad (\cos x(2) = 2 + \cos x) \\ (-1, -1, 2) \qquad r = 1 \qquad (\cos$$

And
$$(|\overline{OP} \times \overline{OA}||^2 = \begin{vmatrix} i & j & k \\ -1 & -1 & 2 \\ r+1 & 5r-1 & 5r-1 & 10r+2 \\ r+1 & r+1 \end{vmatrix}^2$$

$$= \frac{r^2}{(r+1)^2} 800 \qquad ...(3)$$
Now putting (ii) and (iii) in equation (i) we get
 $\frac{5}{r+1}(30r+2) - \frac{1}{5}\frac{r^2800}{(r+1)^2} = 10$
 $\Rightarrow \quad \frac{10}{r+1}(15r+1) - \frac{r^2}{(r+1)^2}(160) = 10$
 $\Rightarrow \quad \frac{15r+1}{r+1} - \frac{16r^2}{(r+1)^2} = 1 \Rightarrow 2r^2 - 14r = 0 \Rightarrow r = 7, r \neq 0$
18.(4) $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x+y| \ge 3\}$ and $B = \{x, y \in \mathbb{R} \times \mathbb{R} : |x|+|y| \le 3\}$.
For Set $A |x+y| \ge 3$
 $\Rightarrow \quad x+y \ge 3 \text{ or } x+y \le -3$
For Set $B |x|+|y| \le 3$
So. $C = \{(3,0),(0,3),(-3,0),(0,-3)\}$
 $\sum |x+y| = 3+3+3=12$
19.(3) Given, $f(x) = 6 + 16 \cos x . \cos(\frac{\pi}{3} - x) . \cos(\frac{\pi}{3} + x) . \sin 3x . \cos 6x$ and $x \in \mathbb{R}$.
We know, $\frac{1}{4} \cos 3x = \cos(\frac{\pi}{3} - x) \cos x \cos(\frac{\pi}{2} + x)$
 $\Rightarrow \quad f(x) = 6 + 16(\frac{1}{4}\cos 3x) \sin 3x . \cos 6x$
 $= 6 + 4\cos 3x \sin 3x \cos 6x$ [: $2\sin 0\cos 0 = \sin 20$]
 $= 6 + 2\sin 6x \cos 6x$
 $\Rightarrow \quad f(x) = 6 + \sin 2x$ and range of $\sin 0$ is $(-1, 1)$.
 $\therefore \quad f(x) = \pi - 7$
 \therefore Distance of $(5, 7)$ from $3x + 4x + 12 = 0$
 $= |\frac{3 \times 5 + 4 \times 7 + 12}{\sqrt{3^2 + 4^2}}| = \frac{15 + 28 + 12}{5} = 11$
20.(2) Given, $x + y + z = 6$

$$x + 2y + 5z = 9$$

VMC | JEE Main - 2025

solution

$$x + 5y + \lambda z = \mu$$
 has not

$$\therefore \qquad \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 5 & \lambda \end{vmatrix} = 0 \qquad \dots (i)$$
and
$$\Delta' = \begin{vmatrix} 1 & 1 & 6 \\ 1 & 2 & 9 \\ 1 & 5 & \mu \end{vmatrix} \neq 0 \qquad \dots (ii)$$

Expanding (i) we get,

$$1(2\lambda - 25) - 1(\lambda - 5) + 1(5 - 2) = 0$$
$$\Rightarrow \qquad \lambda = 17$$

and expanding (ii), we get

$$\begin{split} & l \big(2\mu - 45 \big) - l \big(\mu - 9 \big) + 6 \big(5 - 2 \big) \neq 0 \\ \\ \Rightarrow \qquad \mu \neq 18 \end{split}$$

<u>SECTION – 2</u>

21.(474) Given common difference = $d = \frac{3}{2}$, Let first term = a

Also, we know, $S_{11} = 88$

$$\Rightarrow \frac{11}{2} [2a+10d] = 88$$
$$\Rightarrow 2a+10 \times \frac{3}{2} = 16$$
$$\Rightarrow a = \frac{1}{2}$$

Hence roots of Quadratic $3x^2 - px + q = 0$

are
$$\alpha = T_{10} = a + 9d = \frac{1}{2} + 9 \times \frac{3}{2} = 14$$

and $\beta = T_{11} = a + 10d = \frac{1}{2} + 10 \times \frac{3}{2} = \frac{31}{2}$
Now $\frac{p}{3} = \alpha + \beta = 14 + \frac{31}{2} \Longrightarrow P = \frac{177}{2}$
 $\frac{q}{3} = \alpha\beta = 14 \times \frac{31}{2} \Longrightarrow q = 651$
 $\therefore \qquad q - 2p = 651 - 2\left(\frac{177}{2}\right) = 651 - 177 = 474$

22.(8788) 8, 21, 34, 47,320 A.P.

$$320 = 8 + (n - 1)13$$
$$\Rightarrow \qquad n = 25$$

VMC | JEE Main - 2025

Now,
$$\sigma^2 = \left(\frac{n^2 - 1}{12}\right) d^2 = \frac{624}{12} \times 169 = 8788$$

23.(31) We know, $\alpha + \beta = \alpha$ and $\alpha\beta = -b$

$$\therefore \qquad P_b = \alpha^6 - \beta^6 = \alpha^6 - \alpha\beta^5 + \beta\alpha^5 - \beta^6 - \alpha^5\beta + \alpha\beta^5$$
$$= (\alpha + \beta)(\alpha^5 - \beta^5) - \alpha\beta(\alpha^4 - \beta^4)$$
$$\Rightarrow \qquad p_6 = \alpha P_5 - b P_4$$

Similarly, we can write $\Rightarrow P_5 = aP_4 + bP_3$.

Now putting value of P_3 , P_4 , P_5 in above two equations and solving for a and b, we set.

$$\Rightarrow -3\sqrt{7}i\alpha - 5\sqrt{7}ib = 11\sqrt{7}i \Rightarrow \boxed{3a - 5b = 11} \dots (i)$$

and $45\sqrt{7}i = 11\sqrt{7}ia - 3\sqrt{7}ib$
$$\Rightarrow \boxed{45 = 11a - 3b} \dots (ii)$$

$$\therefore a = 3 \text{ and } b = -4 \therefore a + \beta = 3, a\beta = 4$$

Hence $\left|a^4 + \beta^4\right| = \left|(a^2 + \beta)^2 - 2a^2\beta^2\right| = \left|((\alpha + \beta)^2 - 2a\beta)^2 - 2a^2\beta^2\right| = \left|(9 - 8)^2 - 2 \times 16\right| = \left|1 - 32\right| = 31$
24.(17280) Number of ways.
Case I = If all boys sit together = $\left|5 \times \left|5\right| = 14400$
$$\left|\bigcirc a_1 \bigcirc a_2 \bigcirc a_3 \bigcirc a_4$$

Case II = If no two boys sit together
$$\therefore \text{ Number of ways} = \left|4 \times \left|5\right| = 2880$$

 $B_1 \bigcirc B_2 \bigcirc B_3 \bigcirc B_4 \bigcirc B_5$
$$\therefore \text{ Total number of ways = Case I + Case II$$

$$= 14400 + 2880 = 17280$$

25.(15) We know equation of parabola $\Rightarrow y^2 = 4x + 16$
$$\Rightarrow y^2 = 4(x + 4)$$

Hence, Focus of parabola = (-3, 0)
And (-3, 0) = centre of circle of radius 5.
$$\therefore equation of circle $\Rightarrow (x + 3)^2 + y^2 = 25 \Rightarrow x^2 + y^2 + 6x = 16$
and circle passes through point of intersection of lines $3x - y = 0$ and $x + \lambda y = 4$
$$\Rightarrow x = \frac{4}{3\lambda + 1}, y = \frac{12}{3\lambda + 1}$$
 Now putting x, y in equation of circle
We set $\left(\frac{4}{3\lambda + 1} + 3\right)^2 + \left(\frac{12}{3\lambda + 1}\right)^2 = 25 \Rightarrow \frac{(4 + 9\lambda + 3)^2 + 144}{(3\lambda + 1)^2} = 25$
$$\Rightarrow (9\lambda + 7)^2 + 144 = 25(3\lambda + 1)^2$$

$$\Rightarrow 81\lambda^2 + 49 + 126 + 144 = 225\lambda^2 + 25 + 150\lambda$$$$

$$\Rightarrow \lambda = \frac{1}{6}, 1 \text{ as } \frac{1}{6} < 1 \therefore \lambda_1 = \frac{1}{6} \text{ and } \lambda_2 = 1$$
$$\therefore 12\lambda_1 + 29\lambda_2 = 12\left(-\frac{7}{6}\right) + 29(1) = -14 + 29 = 15$$

-7 . -7 .

(-4, 0)

(-3, 0)

-7

=

PHYSICS

<u>SECTION – 1</u>

26.(3) dQ = mcdT

$$dS = \frac{dQ}{T}$$

$$\int dS = \int_{T_1}^{T_2} \frac{mcdT}{T} \qquad (as \ C = 1 J kg^{-1}K^{-1})$$

$$\Delta S = m [\ln T]_{T_1}^{T_2}$$

$$= m [\ln T_2 - \ln T_1]$$

$$=m\ln\frac{T_2}{T_1}$$

27.(3) p = q 2a

$$= 4 \times 10^{-6} \times 2 \times 9 \times 10^{-2} = 72 \times 10^{-8}$$
$$= 7.2 \times 10^{-7} C - m$$
$$W = -pE(\cos\theta_f - \cos\theta_i)$$
$$W = -7.2 \times 10^{-7} \times 10^4 (\cos 180^\circ - \cos 0^\circ)$$
$$= 14.4 \times 10^{-3} J = 14.4 mJ$$

$$28.(2) \quad KE = \frac{1}{2}mu^2$$
$$KE' = \frac{1}{2}m(u\cos 60)^2$$
$$KE' = \frac{1}{2}mu^2\cos^2 60^\circ$$
$$KE' = \frac{KE}{4}$$

29.(3) Focal length of concave mirror does not depend on the medium surrounding it.

30.(4)
$$\frac{hc}{\lambda} = \phi_0 + KE_{\max}$$

 $\frac{1242eVnm}{\lambda} = (2.14 + 2)eV$
 $\lambda = \frac{1242nm}{4.14} = 300 nm$
31.(2) $5N = kx_1$
 $7N = kx_2$
 $F = k(5x_1 - 2x_2)$

$$= 5kx_{1} - 2kx_{2}$$

$$= 5 \times 5N - 2 \times 7N$$

$$= 25N - 14N = 11N$$
32.(2) $\theta = 5t^{2} - 8t$
 $\omega = \frac{d\theta}{dt} = 10t - 8$
 $\alpha = \frac{d\omega}{dt} = 10$
Power $= t\omega = I\alpha\omega$
 $= \frac{1}{2}MR^{2} \times 10(10t - 8) = 60MR^{2}$
33.(4) $I_{g} = 20 \text{ mA}$ $G = 30\Omega$
 $S = \frac{I_{g}}{I - Ig}G = \frac{20 \text{ mA}}{3A - 20 \text{ mA}} \times 30$
 $\frac{30}{X} = \frac{20 \times 10^{-3}}{3 - 20 \times 10^{-3}} \times 30$
 $X = \frac{3000 - 20}{20} = 149\Omega$
34.(2) Magnetic moment $= [M^{0}L^{2}T^{0}A]$
Torsional constant $= [M^{1}L^{0}T^{-2}A^{-1}]$
Permeability of free space $= [M^{1}L^{1}T^{-2}A^{-2}]$
35.(1) $B_{z} = \frac{E_{y}}{C} = \frac{9.3}{3 \times 10^{8}}T$
 $= 3.1 \times 10^{-8}T$
36.(3) $P_{1} + \frac{1}{\tau}\rho(0)^{2} = P_{2} + \frac{1}{\tau}\rho v^{2}$

6.(3) $P_1 + \frac{1}{2}\rho(0)^2 = P_2 + \frac{1}{2}\rho v^2$ $P_1 - P_2 = \frac{1}{2}\rho v^2$ $v^2 = \frac{2(P_1 - P_2)}{\rho}$ $v \propto \sqrt{P_1 - P_2}$

- **37.(4)** BE per nucleon is more than 8.5 MeV/nucleon for nuclei having mass number between 30 to 70 & nuclear force is a small range force.
- **38.(3)** Both diodes are forward biased

$$I = \frac{5}{20} + \frac{5}{20} = 0.5 A$$

$$39.(1) \quad \mu = \frac{\sin\left(\frac{A+\delta_{\min}}{2}\right)}{\sin\frac{A}{2}}$$

$$\sqrt{3} = \frac{\sin A}{\sin\frac{A}{2}} = 2\cos\frac{A}{2}$$

$$\cos\frac{A}{2} = \frac{\sqrt{3}}{2} \Rightarrow \frac{A}{2} = 30^{\circ}$$

$$A = 60^{\circ}$$

$$40.(4) \quad \frac{I_{\max}}{I_{\min}} = \frac{(E_1+E_2)^2}{(E_1-E_2)^2} = \frac{9}{4}$$

$$\frac{E_1+E_2}{E_1-E_2} = \frac{3}{2} \Rightarrow 2E_1 + 2E_2 = 3E_1 - 3E_2$$

$$E_1 = 5E_2$$
Given that
$$E \propto \text{ slit width}$$

$$\frac{E_1}{E_2} = \frac{xd}{d} = 5$$

$$\Rightarrow \qquad x = 5$$

$$41.(4) \quad \text{Work} = W_{AB} + W_{BC} + W_{CD}$$

$$= +P_0V_0 + 0 + (-4P_0V_0)$$

$$= -3P_0V_0$$

42.(3) From Kepler's third law

$$T^2 \propto r^3$$

 $\frac{T_2}{T_1} = \left(\frac{r_2}{r_1}\right)^{3/2} = \left(\frac{1}{9}\right)^{3/2} = \frac{1}{27}$
 $\frac{T_2}{27} = \frac{1}{27} \Rightarrow T_2 = 1 \text{ day}$

43.(1) Velocity of wave is

$$=\frac{-\text{coefficient of }t}{\text{coefficient of }x} = \frac{-600}{20 \times 10^{-3}} = -30 \times 10^3 \text{ mm/s} = -30 \text{ m/s}$$

44.(3)
$$U = \frac{1}{4\pi \epsilon_0} \frac{q_1 q_2}{r}$$

$$=9 \times 10^9 \times \frac{7 \times 10^{-6} \times -4 \times 10^{-6}}{14 \times 10^{-2}} = -18 \times 10^{-1} J = -1.8 J$$

45.(4)
$$E = \alpha^3 e^{-\beta t}$$

 $\ln E = 3 \ln \alpha - \beta t$

VMC | JEE Main - 2025

$$\frac{\Delta E}{E} = 3\frac{\Delta \alpha}{\alpha} - \beta \Delta t$$
$$\frac{\Delta E}{E} \times 100\% = 3\left(\frac{\Delta \alpha}{\alpha} \times 100\%\right) + \beta\left(\frac{\Delta t}{t} \times 100\%\right)t$$
$$= 3 \times 1.2\% + 0.3 \times 1.6\% \times 5\%$$
$$= 3.6\% + 2.4\% = 6\%$$

<u>SECTION – 2</u>

46.(2190)
$$P_{in} = P_0 + h\rho g + \frac{2S}{r}$$

$$P_{in} - P_0 = 0.2 \times 10^3 \times 10 + \frac{2 \times 0.095}{10^{-3}} = 2000 + 190 = 2190 Nm^{-2}$$

47.(100) q = CV

$$\frac{dq}{dt} = C \frac{dV}{dt}$$
$$0.25 \times 10^{-3} = 2.5 \times 10^{-6} \frac{dV}{dt}$$
$$\frac{dV}{dt} = 100 \frac{V}{m}$$

48.(16) In steady state current
$$=\frac{5}{10+15}=\frac{1}{5}A$$

Potential difference across the capacitor $=\frac{1}{5} \times 10 = 2V$

$$q = CV = 8\mu F \times 2V = 16\mu C$$

49.(2) Resonance angular frequency =
$$\frac{1}{\sqrt{LC}}$$

$$=\frac{1}{\sqrt{25\times10^{-9}\times100\times10^{-3}}}=\frac{10^{6}}{50}=2\times10^{4} \text{ rad/s}$$

50.(3) $L = \frac{M}{2} vr$

$$= \frac{M}{2} \sqrt{\frac{GM}{r}}r$$
$$= \frac{M}{2} \sqrt{GMr} = \frac{M}{2} \sqrt{GM\frac{4R}{3}}$$
$$= M \sqrt{\frac{GMR}{3}}$$

CHEMISTRY

SECTION - 1

51.(3) $\Delta G = \Delta H - T \Delta S$

For a reaction to be spontaneous $\Delta G = -ve$

(B) $\Delta G = \Delta H - T \Delta S$ +ve +ve

 ΔG will be –ve only at high T

(C)
$$\Delta G = \Delta H - T\Delta S$$

-ve -ve

 ΔG will be -ve only at low T

52.(4) With increase in temperature K_w increases So, degree of dissociation of water increases

i.e., $[H^+]$ and $[OH^-]$ will increase, pH and pOH will decrease.

53.(1) α - Helix and β – pleated sheets belongs to secondary structure of protein.

54.(3) Bronze
$$\rightarrow$$
 Cu, Sn

Brass \rightarrow Cu, Zn UK silver coin \rightarrow Cu, Ni

Stainless steel \rightarrow Fe, Cr, Ni, C

55.(2)
$$PbS \xrightarrow{HNO_3} Pb(NO_3)_2 \xrightarrow{H_2SO_4} PbSO_4 \xrightarrow{1. Ammonium acetate}{2. Acetic acid} \xrightarrow{PbCrO_4} PbCrO_4$$
 (C) yellow

56.(1) $\Delta G^{\circ} = -nFE^{\circ}$

 $\begin{array}{lll} \text{Option } 1 \Rightarrow & \Delta G^\circ = -2 \times F \times \{0.8 + 0.76\} = -3.12F \\ \text{Option } 2 \Rightarrow & \Delta G^\circ = -20 \times F \times \{-2.37 + 0.76\} = +3.22F \\ \text{Option } 3 \Rightarrow & \Delta G^\circ = -2 \times F\{-2.37 - 0.8\} = +6.34F \\ \text{Option } 4 \Rightarrow & \Delta G^\circ = -2 \times F\{0.8 - 0.34\} = -0.92F \end{array}$

57.(2) Solvolysis follows $S_N 1$ i.e. stability of carbocation

58.(2) For liquid solution of two liquids 1 and 2

$$\Rightarrow \qquad P_1 = P_T y_1 = P_1^{\circ} X_1$$
$$\Rightarrow \qquad \frac{P_T}{X_1} = \frac{P_1^{\circ}}{y_1}$$
$$\Rightarrow \qquad \frac{P_2^{\circ} + X_1 \left(P_1^{\circ} - P_2^{\circ}\right)}{X_1} = \frac{P_1^{\circ}}{y_1}$$

$$\Rightarrow \frac{P_2^{\circ}}{X_1} + \left(P_1^{\circ} - P_2^{\circ}\right) = \frac{P_1^{\circ}}{y_1}$$

$$\Rightarrow \frac{1}{X_1} = \left(\frac{P_1^{\circ}}{P_2^{\circ}}\right) \frac{1}{y_1} + \frac{P_2^{\circ} - P_1^{\circ}}{P_2^{\circ}}$$
Slope = $\frac{P_1^{\circ}}{P_2^{\circ}}$ and intercept = $\frac{P_2^{\circ} - P_1^{\circ}}{P_2^{\circ}}$
59.(4)
$$X_2Y(g) \rightleftharpoons X_2(g) + \frac{1}{2}Y_2(g)$$
Moles at equilibrium
$$1 - x \qquad x \qquad \frac{x}{2}$$

$$K = -\left(\frac{P_{X_2}}{2}\right)\left(\frac{P_{Y_2}}{2}\right)^{\frac{1}{2}}$$

$$K_{P} = \frac{\left(\frac{1}{X_{2}}\right)\left(\frac{1}{Y_{2}}\right)^{2}}{\left(\frac{P_{X_{2}}Y}{1+\frac{x}{2}}\right)}$$
$$K_{P} = \frac{\left(\frac{x}{1+\frac{x}{2}} \times P\right)\left(\frac{x}{2\left(1+\frac{x}{2}\right)} \times P\right)^{\frac{1}{2}}}{\left(\frac{1-x}{1+\frac{x}{2}} \times P\right)}$$

Assuming x to be very small

$$K_{P} = \frac{\frac{3}{x^{2}} \frac{1}{P^{2}}}{\binom{1}{2}} \implies \qquad x^{\frac{3}{2}} = K_{P} \times \sqrt{\frac{2}{P}}$$
$$\implies \qquad x = \left(K_{P}^{2} \times \frac{2}{P}\right)^{\frac{1}{3}}$$

60.(3) Correct match of ozonolysis product are:

- **61.(3)** A plot of \sqrt{v} vs atomic number is a straight line. So both statements are false.
- **62.(3)** Boiling point \propto molecular mass

Boiling point \propto intermolecular H-bonding.

63.(4) For zero order reaction $A \rightarrow P$

Rate =
$$k$$

 $[A]_{t} = [A]_{0} - kt$

64.(4) \Rightarrow $P^{\circ} - P \propto X_{solute}$

 \Rightarrow 10 \propto 0.2

So,
$$20 \propto 0.4$$

 $X_{solvent} = 1 - 0.4 = 0.6$

65.(3)
$$K_2Cr_2O_7 \xrightarrow{KOH} K_2CrO_4 \xrightarrow{H_2SO_4} K_2Cr_2O_7 + K_2SO_4$$

[A] $\xrightarrow{-H_2O} K_2Cr_2O_7 + K_2SO_4$

- **66.(4)** Hydrate of formaldehyde is stable due to small substituents hydrate of chloral is stable because of -I effect.
- **67.(1)** Order of melting point of group-14

 $C>Si>Ge>Pb>Sn \\ z=6 \ 14 \ 32 \ 82 \ 50$

68.(1) For a shell total number of orbitals = n^2

Magnetic quantum numbers have values (-l to+l) including zero.

69.(1)

```
Fe^{+6} = [Ar]3d^2

Mn^{+3} = [Ar]3d^4

Fe^{+3} = [Ar]3d^5

Cr^{+2} = [Ar]3d^4

Ni^{+4} = [Ar]3d^6
```

70.(4)

<u>SECTION – 2</u>

71.(200)

$$\Delta_{\rm f} {\rm H}^{\circ} = \Delta_{\rm sub} {\rm H}^{\circ} + \Delta_{\rm i} {\rm H}^{\circ} + \frac{1}{2} {\rm B} \cdot {\rm E} \, {\rm of} \, {\rm X}_2 + \Delta_{\rm eg} {\rm H}^{\circ} + \Delta_{\rm Lattice} {\rm H}^{\circ}$$

B.E of $X_2 = 2\{800 + 300 - 400 - 500 - 100\} = 200 \text{ kJ mol}^{-1}$

72.(27) The compound X can be:

$$CH_{3} - C - CH_{2} - CH_{2} - CH = CH - CH_{3}$$

OR

$$CH_{3} - C - CH_{2} - CH_{2} - CH = C - CH_{3}$$

$$| CH - CH_{3}$$

$$| CH - CH_{3}$$

Total number of $\sigma\,$ bonds in any of the X is 27.

73.(4)

74.(153)

$$4AI + 3O_2 \rightarrow 2AI_2O_3$$
$$n_{AI} = \frac{81}{27} = 3 \text{ moles}$$
$$n_{O_2} = \frac{128}{32} = 4 \text{ moles}$$
Limiting reagent is Al.

~ ~

$$n_{Al_2O_3} = \frac{2}{4} \times n_{Al}$$

$$n_{Al_2O_3} = \frac{1}{2} \times 3 = \frac{3}{2}$$

$$m_{Al_2O_3} = \frac{3}{2} \times 102 = 153 \text{ g.}$$

75.(100)

 $\xrightarrow{\text{Combustion}} H_2O$ 0.9g Organic compound -

$$\begin{split} n_{H_2O} &= \frac{0.9}{18} = \frac{1}{20} \\ n_H & \text{in } H_2O = \frac{1}{20} \times 2 = 0.1 \\ n_H & \text{in organic compound} = 0.1 \end{split}$$

 $m_H = 0.1g$ in 0.01 mole of X

Wt. of H atom in 1 mole compound $= \frac{0.1}{0.01} = 10$ g.

$$10 = \frac{10}{M} \times 100 \Longrightarrow M = 100 \text{ g}$$