

JEE Main – 2025

28th JANUARY 2025 (Evening Shift)

General Instructions

- 1. The test is of **3 hours** duration and the maximum marks is **300**.
- The question paper consists of 3 Subjects (Subject I: Mathematics, Subject II: Physics, Subject III: Chemistry).
 Each Part has two sections (Section 1 & Section 2).
- **3.** Section 1 contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.
- **4. Section 2** contains **5 Numerical Value Type Questions**. The answer to each question is an **integer** ranging from 0 to 999.
- 5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.
- 6. On completion of the test, the candidate must hand over the Answer Sheet to the **Invigilator** on duty in the Room/Hall. **However, the candidates are allowed to take away this Test Booklet with them**.

Marking Scheme

- 1. Section 1: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.
- 2. Section 2: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.

SUB	JECT I	: MATHEMA	TICS					MARKS: 100
<u></u>				SECT	ION-1			
This se	ction co	ntains 20 Multip	le Choic	e Questions. Eac	h questi	on has 4 choices	(1), (2)	, (3) and (4), out of which
ONLY	ONE CHO	ICE is correct.						
1.	From t		ord is se		-			rs of the word GARDEN. eted word will NOT have
	(1)	$\frac{1}{3}$	(2)	$\frac{2}{3}$	(3)	$\frac{1}{2}$	(4)	$\frac{1}{4}$
2.	Let f be	e a real valued c	ontinuo	us function defir	ned on th	ne positive real a	uxis sucl	h that $g(x) = \int_{0}^{x} tf(t) dt$. If
	$g(x^3)=$	$x^6 + x^7$, then va	alue of \sum_{r}^{1}	$\sum_{r=1}^{5} f(r^3)$ is:				
	(1)	340	(2)	320	(3)	310	(4)	270
3.	If $\alpha + i\beta$	β and $\gamma + i\delta$ are t	the roots	s of $x^2 - (3 - 2i)x$ -	- (2i – 2)	=0, $i = \sqrt{-1}$, then	η αγ+βδ	is equal to:
	(1)	6	(2)	- 6	(3)	-2	(4)	2
4.	Let [<i>x</i>]	denote the grea	test inte	ger less than or o	equal to	<i>x</i> . Then the dom	ain of <i>f</i>	$f(x) = \sec^{-1}(2[x]+1)$ is:
	(1)	$(-\infty, -1] \cup [1,\infty)$			(2)	(−∞,−1]∪[0,∞)		
	(3)	$(-\infty,\infty)-\{0\}$			(4)	$(-\infty,\infty)$		
5.	If A an	d B are the point	nts of ir	ntersection of cir	rcle x^2 +	$y^2 - 8x = 0$ and t	he hype	erbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ and a
	point F	moves on the li	ne 2 <i>x</i> – 3	3y+4=0, then the	ne centro	oid of $\triangle PAB$ lies	on the l	ine:
	(1)	6x - 9y = 20	(2)	4x - 9y = 12	(3)	x + 9y = 36	(4)	9x - 9y = 32
6.	If $f(x)$	$=\int \frac{1}{x^{1/4}(1+x^{1/4})}$	- <i>dx</i> , <i>f</i> (0))	=-6, then $f(1)$	is equal	to:		
	(1)	$2 - \log_e 2$	(2)	$\log_e 2 + 2$	(3)	$4(\log_e 2 - 2)$	(4)	$4(\log_e 2+2)$
7.	For pos	sitive integers <i>n</i> ,	if 4a _n =	$(n^2 + 5n + 6)$ and	$S_n = \sum_{k=1}^n$	$\left(\frac{1}{a_k}\right)$, then the v	alue of 5	507 s ₂₀₂₅ is:
	(1)	675	(2)	540	(3)	1350	(4)	135
8.	The sq	uare of the dista	ance of t	he point $\left(\frac{15}{7}, \frac{32}{7}\right)$	$\left(\frac{2}{7}, 7\right)$ from	In the line $\frac{x+1}{3}$	$=\frac{y+3}{5}=$	$\frac{z+5}{7}$ in direction of the
	vector	$\hat{i} + 4\hat{j} + 7\hat{k}$ is:						
	(1)	44	(2)	41	(3)	54	(4)	66

9.	The area of the region bounded by the curves $x(1+y^2)=1$ and $y^2=2x$ is:									
	(1)	$\frac{1}{2}\left(\frac{\pi}{2} - \frac{1}{3}\right)$	(2)	$\frac{\pi}{4} - \frac{1}{3}$	(3)	$2\left(\frac{\pi}{2} - \frac{1}{3}\right)$	(4)	$\frac{\pi}{2} - \frac{1}{3}$		
10.	• /							by $\sqrt{3}\hat{i} + \hat{j}, \hat{i} + \sqrt{3}\hat{j}$ and <i>C</i> from the line bisecting		
	the ar	the angle between the vectors \overrightarrow{OA} and \overrightarrow{OB} is $\frac{9}{\sqrt{2}}$, then the sum of all the possible values of <i>a</i> is :								
	(1)	2	(2)	1	(3)	0	(4)	$\frac{9}{2}$		
11.	Let f	$f:\mathbb{R}-\{0\} \rightarrow (-\infty,1)$]	be a pol	ynomial of degre	ee 2, sa	tisfying $f(x) f\left(-\frac{1}{2}\right)$	$\left(\frac{1}{x}\right) = f(x)$	$f(\frac{1}{x})$. If $f(K) = -2K$,		
	then t	he sum of square	es of all j	possible values o	of K is:	Ň	,			
	(1)	7	(2)	1	(3)	6	(4)	9		
12.		qual sides of an then the sum, of		_	-		=4.If n	n is the slope of its third		
	(1)	6	(2)	-6	(3)	$-2\sqrt{10}$	(4)	12		
10						Ŷ				
13.		$\hat{k} + \hat{j} - \hat{k}$) and $\frac{1}{11}(-1)$					b=3t+	$\hat{j} - \hat{k}$ respectively, are		
	11	11 11	н	Trkj, tien a 1	P 1 1	s equal to .				
	(1)	16	(2)	26	(3)	23	(4)	18		
14.							. If $F(z)$	$x = xf(x)$ for all $x \in \mathbb{R}$,		
	$\int_{0}^{2} xF'(x)$	x) $dx = 6$ and $\int_{0}^{2} x^{2}$	$^2F''(x)dx$	r = 40, then $F'(2)$	$+\int_{0}^{2}F(x)dx$	<i>lx</i> is equal to :				
	(1)	11	(2)	13	(3)	9	(4)	15		
15.	10	$\begin{cases} \frac{1}{\sin\left(\frac{\pi}{4} + (r-1)\frac{\pi}{6}\right)} \end{cases}$)						
	(1)	4	(2)	2	(3)	8	(4)	10		
		т Г 1 П								
16.	Let A	$\mathbf{a} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2\\ 0 & 1 \end{bmatrix} \text{ and}$	$P = \begin{bmatrix} \cos x \\ \sin x \end{bmatrix}$	$ \begin{bmatrix} s\theta & -\sin\theta\\ n\theta & \cos\theta \end{bmatrix}, \theta > 0 $. If <i>B</i> =	$PAP^T, C = P^T B^{10}$	P and t	the sum of the diagonal		
	eleme	nts of C is $\frac{m}{n}$, w	here gcc	l(m,n)=1, then r	n+n is:					
	(1)	65	(2)	127	(3)	258	(4)	2049		
17.	Let th	e coefficients of t	hree cor	nsecutive terms	T_r, T_{r+1}	and T_{r+2} in the	e binomi	ial expansion of $(a+b)^{12}$		
								m of all rational terms in		
	the bi	nomial expansio	n of ({ √3	$+\sqrt[3]{4}$. Then p	+q is eq	qual to:				
	(1)	287	(2)	283	(3)	299	(4)	295		

18. Bag B_1 contains 6 white and 4 blue balls, Bag B_2 contains 4 white and 6 blue balls, and Bag B_3 contains 5 white and 5 blue balls. One of the bags is select at random and a ball is drawn from it. If the ball is white, then the probability, that the ball is drawn from Bag B₂, is:

(1)
$$\frac{4}{15}$$
 (2) $\frac{2}{5}$ (3) $\frac{1}{3}$ (4) $\frac{2}{3}$

19. If the midpoint of a chord of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is $\left(\sqrt{2}, \frac{4}{3}\right)$, and the length of the chord is $\frac{2\sqrt{\alpha}}{3}$,

then α is:

(1) 26 **(2)** 18 **(3)** 20 **(4)** 22

20. Let $f:[0,3] \rightarrow A$ be defined by $f(x)=2x^3-15x^2-36x+7$ and $g:[0,\infty) \rightarrow B$ be defined by $g(x)=\frac{x^{2025}}{x^{2025}+1}$. If both the functions are onto and $S = \{x \in \mathbb{Z} : x \in A \text{ or } x \in B\}$, then n(S) is equal to :

(1) 30 **(2)** 31 **(3)** 36 **(4)** 29

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

21. The interior angles of a polygon with n sides, are in A.P. with common difference 6°. If the largest interior angle of the polygon is 219°, then n is equal to ______.

22. Let
$$f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left(\frac{\tan(x/2^{r+1}) + \tan^3(x/2^{r+1})}{1 - \tan^2(x/2^{r+1})} \right)$$
. Then $\lim_{x \to 0} \frac{e^x - e^{f(x)}}{(x - f(x))}$ is equal to_____.

23. The number of natural numbers, between 212 and 999, such that the sum of their digits is 15, is _____.

24. If
$$y = y(x)$$
 is the solution of the differential equation, $\sqrt{4 - x^2} \frac{dy}{dx} = \left(\left(\sin^{-1} \left(\frac{x}{2} \right) \right)^2 - y \right) \sin^1 \left(\frac{x}{2} \right)$,

$$-2 \le x \le 2, y(2) = \frac{\pi^2 - 8}{4}$$
, then $y^2(0)$ is equal to _____.

25. Let A and B be the two points of intersection of the line y+5=0 and the mirror image of the parabola $y^2=4x$ with respect to the line x+y+4=0. If *d* denotes the distance between *A* and *B*, and a denotes the area of ΔSAB , where S is the focus of the parabola $y^2=4x$, then the value of (a+d) is _____.

SUBJECT II: PHYSICS

MARKS: 100

SECTION-1

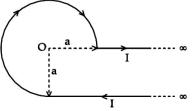
This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which

ONLY ONE CHOICE is correct.

26. In a long glass tube, mixture of two liquids *A* and *B* with refractive indices 1.3 and 1.4 respectively, forms a convex refractive meniscus towards *A*. If an object placed at 13 cm from the vertex of the meniscus in *A* forms an image with a magnification of '-2' then the radius of curvature of meniscus is:

(1)
$$\frac{4}{3}$$
 cm (2) $\frac{2}{3}$ cm (3) $\frac{1}{3}$ cm (4) 1 cm

27. A concave mirror produces an image of an object such that the distance between the object and image is 20 cm. If the magnification of the image is '-3', then the magnitude of the radius of curvature of the mirror is:

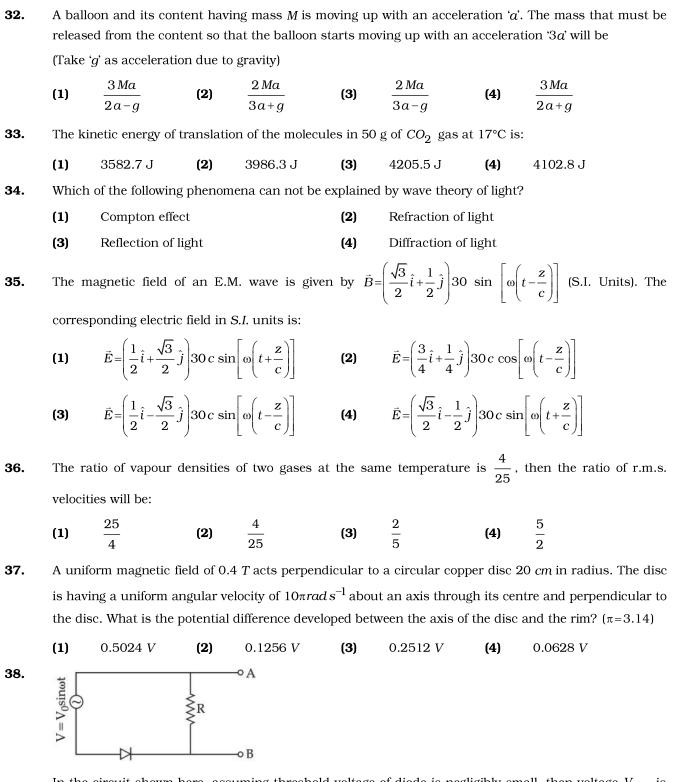

28. The frequency of revolution of the electron in Bohr's orbit varies with *n*, the principal quantum number as:

(1)
$$\frac{1}{n^3}$$
 (2) $\frac{1}{n^4}$ (3) $\frac{1}{n^2}$ (4) $\frac{1}{n}$

29. A body of mass 4 kg is placed on a plane at a point P having coordinate (3, 4) m. Under the action of force $\vec{F} = (2\hat{i} + 3\hat{j})N$, it moves to a new point *Q* having coordinates (6, 10) m in 4 sec. The average power and instantaneous power at the end of 4 sec are in the ratio of:

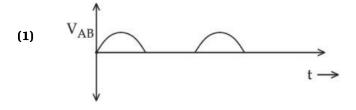
30.

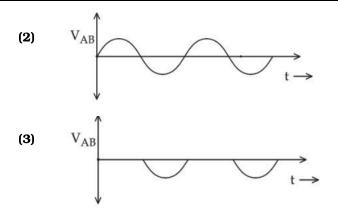
An infinite wire has a circular bends of radius a, and carrying a current I as shown in figure. The magnitude of magnetic field at the origin O of the arc is given by:


(1)	$\frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{\pi}{2} + 1 \right]$	(2)	$\frac{\mu_0}{2\pi} \frac{I}{a} \left[\frac{\pi}{2} + 2 \right]$	(3)	$\frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{3\pi}{2} + 1 \right]$	(4)	$\frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{3\pi}{2} + 2 \right]$
-----	---	-----	---	-----	--	-----	--

31. Match **List – I** with **List – II** .

	List – 1	List – II			
(A)	Angular Impulse	(I)	$[M^0 L^2 T^{-2}]$		
(B)	Latent Heat	(II)	$[ML^2T^{-3}A^{-1}]$		
(C)	Electrical resistivity	(III)	$[ML^2T^{-1}]$		
(D)	(D) Electromotive force		$[ML^3T^{-3}A^{-2}]$		
Chase	e the correct onswer from the options of	cirrore le ol			


Choose the **correct** answer from the options given below ;


(1)	(A)-(III), (B)-(I), (C)-(IV), (D)-(II)	(2)	(A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(3)	(A)-(III), (B)-(I), (C)-(II), (D)-(IV)	(4)	(A)-(I), (B)-(III), (C)-(IV), (D)-(II)

Vidyamandir Classes: Innovating for Your Success

In the circuit shown here, assuming threshold voltage of diode is negligibly small, then voltage V_{AB} is correctly respresented by :

(4) V_{AB} would be zero at all times

39. A 400 *g* solid cube having an edge of length 10 *cm* floats in water. How much volume of the cube is outside the water ?

(3)

 $1400 \, cm^3$

 $600 \ cm^{3}$

(Given: density of water = 1000 kg m^3)

N

(2)

 $400 \, cm^3$

۱P

d

21

(1)

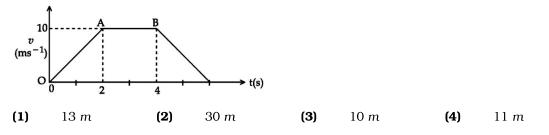
S

40.

A bar magnet has total length 2l=20 units and the field point *P* is at a distance d = 10 units from the centre of the magnet. If the relative uncertainty of length measurement is 1%, then uncertainty of the magnetic field at point *P* is:

(1)
$$10\%$$
 (2) 4% (3) 3% (4) 5%

41. A parallel plate capacitor of capacitance $1 \ \mu F$ is charged to a potential difference of 20 *V*. The distance between plates is $1 \ \mu m$. The energy density between plates of capacitor is:


(1)
$$2 \times 10^2 J / m^3$$
 (2) $1.8 \times 10^3 J / m^3$ (3) $2 \times 10^{-4} J / m^3$ (4) $1.8 \times 10^5 J / m^3$

42. Earth has mass 8 times and radius 2 times that of a planet. If the escape from the earth is 11.2 km/s, the escape velocity in km/s from the planet will be:

43. A uniform rod of mass 250 *g* having length 100 *cm* is balanced on a sharp edge of 40 *cm* mark. A mass of 400 *g* is suspended at 10 *cm* mark. To maintain the balance of the rod, the mass to be suspended at 90 cm mark, is:

(1)
$$300 g$$
 (2) $290 g$ (3) $190 g$ (4) $200 g$

44. The velocity-time graph of an object moving along a straight line is shown in figure. What is the distance covered by the object between t = 0 to t = 4s?

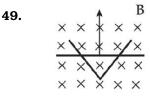
 $4000 \ cm^3$

(4)

45. Given below are two statements. One is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**. **Assertion (A) :** Knowing initial position x_0 and initial momentum p_0 is enough to determine the position and momentum at any time *t* for a simple harmonic motion with a given angular frequency ω .

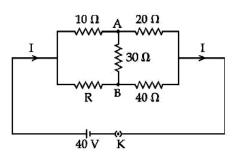
Reason (R) : The amplitude and phase can be expressed in terms of x_0 and p_0 .

In the light of the above statements, choose the **correct** answer from the option given below:


- (1) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- **(3) (A)** is false but **(R)** is true
- **(4) (A)** is true but **(R)** is false

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

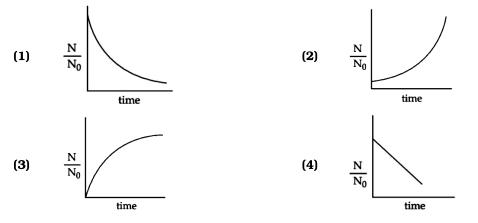

- **46.** A thin transparent film with refractive index 1.4, is held on circular ring of radius 1.8 *cm*. The fluid in the film evaporates such that transmission through the film at wavelength 560 *nm* goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is $\pi \times 10^{-13} m^3 / s$.
- **47.** An electric dipole of dipole moment 6×10^{-6} *cm* is placed in uniform electric field of magnitude 10^{6} V/m. Initially, the dipole moment is parallel to electric field. The work that needs to be done on the dipole to make its dipole moment opposite to the field, will be ______ J.
- **48.** The volume contraction of a solid copper cube of edge length 10 *cm*, when subjected to a hydraulic pressure of 7×10^6 *Pa*, would be _____ *mm*³.

(Given bulk modulus of copper = $1.4 \times 10^{11} Nm^{-2}$)

A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field *B* exists into the page. The bar starts to move from the vertex at time t = 0 with a constant velocity. If the induced EMF is $E \propto t^n$, then value of *n* is _____.

50. The value of current *I* in the electrical circuit as given below, when potential at *A* is equal to the potential at *B*, will be ______ *A*.

SUBJECT III: CHEMISTRY


MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE CHOICE is correct.**

For bacterial growth in a cell culture, growth law is very similar to the law of radioactive decay. Which of 51. the following graphs is most suitable to represent bacterial colony growth?

Where N - Number of bacteria at any time, N₀ – Initial number of Bacteria.

52. Given below are two statements:

> Statement (I): According to the Law of Octaves, the elements were arranged in the increasing order of their atomic number.

> Statement (II): Meyer observed a periodically repeated pattern upon plotting physical properties of certain elements against their respective atomic numbers.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Statement I is false but Statement II is true
- (2)Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false
- 53. Identify correct conversion during acidic hydrolysis from the following:
 - (A) starch gives galactose.
 - (B) cane sugar gives equal amount of glucose and fructose.
 - (C) milk sugar gives glucose and galactose.
 - (D) amylopectin gives glucose and fructose
 - (E) amylose gives only glucose.

Choose the **correct** answer from the options given below:

- (1) (B), (C) and (E) only (2) (C), (D) and (E) only
- (3) (A), (B) and (C) only (4) (B), (C) and (D) only

54. The purification method based on the following physical transformation is:

Solid – (X)	$\xrightarrow{\text{Heat}} \text{Vapour} - (X)$	$\xrightarrow{\text{Cool}} \text{Solid}_{(X)}$		
(1)	Distillation		(2)	Crystallization
(3)	Extraction		(4)	Sublimation

55. Identify correct statements:

- (A) Primary amines do not give diazonium salts when treated with NaNO₂ in acidic condition.
- (B) Aliphatic and aromatic primary amines on heating with CHCl₃ and ethanolic KOH form carbylamines.
- (C) Secondary and tertiary amines also give carbylamine test.
- (D) Benzenesulfonyl chloride is known as Hinsberg's reagent.
- (E) Tertiary amines reacts with benzenesulfonyl chloride very easily.

Choose the **correct** answer from the options given below:

- (1) (B) and (C) only (2) (A) and (B) only
- (3) (B) and (D) only (4) (D) and (E) only
- **56.** Assume a living cell with 0.9% (ω/ω) of glucose solution (aqueous). This cell is immersed in another solution having equal mole fraction of glucose and water.

(Consider the data upto first decimal place only)

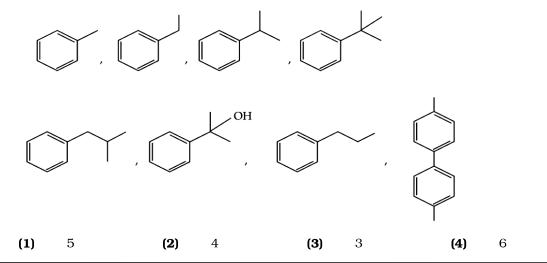
The cell will :

- (1) show no change in volume since solution is $0.9\% (\omega/\omega)$
- (2) shrink since solution is 0.45% (ω/ω) as a result of association of glucose molecules (due to hydrogen bonding)

 d^2sp^3

List - II (Hybridisation of central metal ion)

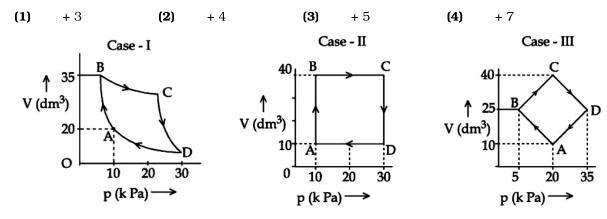
- (3) swell up since solution is $1\% (\omega/\omega)$
- (4) shrink since solution is $0.5\% (\omega/\omega)$


57. Match **List-I** with **List-II**.

List-I (Complex)

- (A) $[CoF_6]^{3-}$ (I)
- (B) $[NiCl_4]^{2-}$ (II) sp^3
- (C) $[Co(NH_3)_6]^{3+}$ (III) sp^3d^2
- (C) $[Ni(CN)_4]^{2-}$ (III) dsp^2

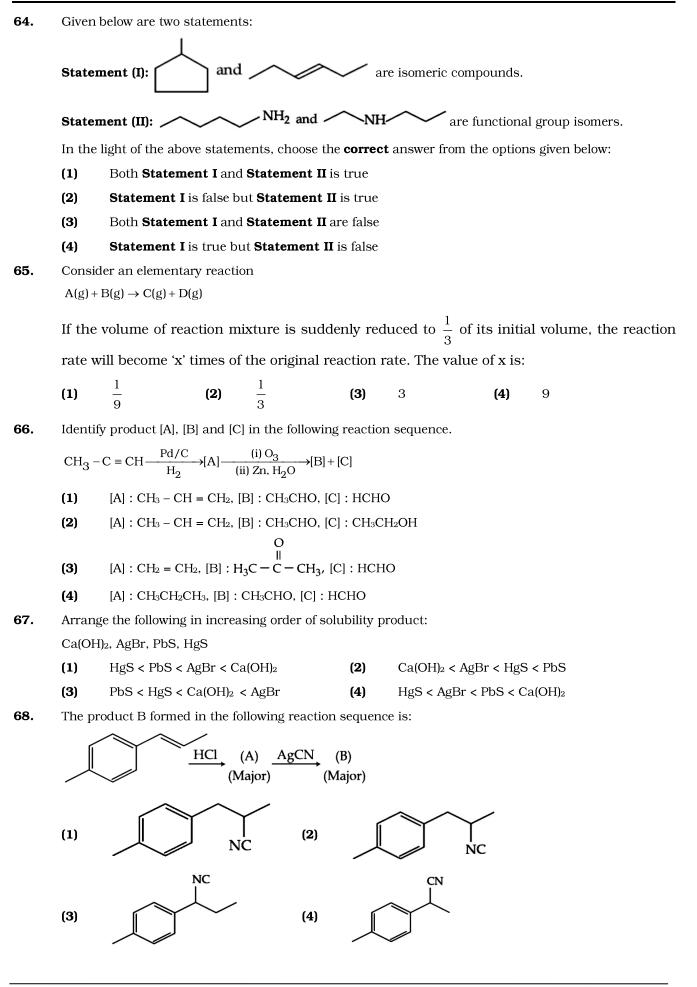
Choose the **correct** answer from the options given below:


- (1) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) (2) (A)-(I), (B)-(IV), (C)-(III), (D)-(II)
- (3) (A)-(III), (B)-(II), (C)-(I), (D)-(IV) (4) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
- **58.** The total number of compounds from below when treated with hot KMnO₄ giving benzoic acid is:

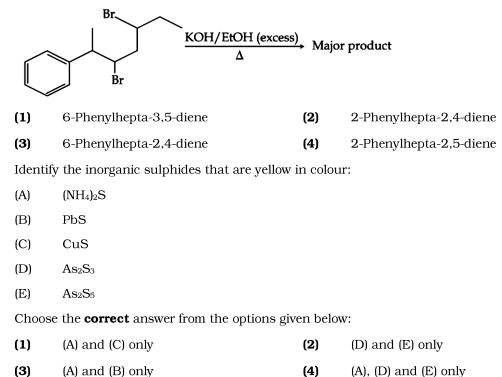
59.	Which of the following is/are not correct with respect to energy of atomic orbitals of hydrogen atom?											
	(A)	1s < 2p < 3d <	4s			(B)	1s < 2s	= 2p < 3s = 3p)			
	(C)	1s < 2s < 2p <			(D)	1s < 2s	< 4s < 3d					
	Choos	Choose the correct answer from the options given below:										
	(1)	(A) and (C) onl			(2)	(2) (B) and (D) only						
	(3)	(C) and (D) onl	у			(4)	(A) and	(B) only				
60.	Conce	Concentrated nitric acid is labelled as 75% by mass. The volume in mL of the solution which contains										
	30 g c	30 g of nitric acid is										
	Given	Given: Density of nitric acid solution is 1.25 g/mL.										
	(1)	32	(2)	45		(3)	40	(4)	55			
61.	Match List-I with List-II.											
	List-I (Saccharides) List -					II (Glyc	cosidic-lin	kages found)				
	(A)	Sucrose			(I)	$\alpha 1 - 4$						
	(B)	Maltose Lactose			(II)	α1-	$\alpha 1 - 4$ and $\alpha 1 - 6$					
	(C)				(III)	$\alpha 1 - \beta 2$						
	(C)	Amylopectin (III)					$\beta 1-4$					
	Choos	Choose the correct answer from the options given below:										
	(1)	(A)-(IV), (B)-(II), (C)-(I), (D)-(III)				(2)	2) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)					
	(3)	(A)-(II), (B)-(IV)	, (C)-(III)), (D)-(I)		(4)	(A)-(III),	(A)-(III), (B)-(I), (C)-(IV), (D)-(II)				
62.		mphoteric oxide anion. The oxida	0				-	on with alkali	leads to forma	ation of an		

Vidyamandir Classes: Innovating for Your Success

oxide anion. The oxidation state of V in the oxide anion is:



An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path $A \to B \to C \to D \to A$ as shown in the three cases above.


Choose the **correct** option regarding ΔU :

- (1) ΔU (Case-I) > ΔU (Case-II) > ΔU (Case-III)
- (2) ΔU (Case-I) = ΔU (Case-II) = ΔU (Case-III)
- (3) $\Delta U \text{ (Case-III)} > \Delta U \text{ (Case-II)} > \Delta U \text{ (Case-I)}$
- (4) $\Delta U \mbox{ (Case-I)} > \Delta U \mbox{ (Case-III)} > \Delta U \mbox{ (Case-III)}$

63.

69. The major product of the following reaction is:

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

71. Consider the following data:

70.

Heat of formation of $CO_2(g) = -393.5 \text{ kJ mol}^{-1}$

Heat of formation of $H_2O(l) = -286.0 \text{ kJ mol}^{-1}$

Heat of combustion of benzene = $-3267.0 \text{ kJ mol}^{-1}$

The heat of formation of benzene is $____ kJ mol^{-1}$.

(Nearest integer)

- **72.** The spin only magnetic moment (μ) value (B.M.) of the compound with strongest oxidising power among Mn₂O₃, TiO and VO is ______ B.M. (Nearest integer).
- **73.** Total number of molecules/species from following which will be paramagnetic is ______.

 $O_2, O_2^+, O_2^-, NO, NO_2, CO, K_2[NiCl_4], [Co(NH_3)_6]Cl_3, K_2[Ni(CN)_4]$

- **74.** Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ______. (Nearest integer).
- **75.** A group 15 element forms $d\pi d\pi$ bond with transition metals. It also forms hydride, which is a strongest base among the hydrides of other group members that form $d\pi d\pi$ bond. The atomic number of the element is ______.