

JEE Main – 2025

24th JANUARY 2025 (Morning Shift)

General Instructions

- 1. The test is of **3 hours** duration and the maximum marks is **300**.
- The question paper consists of 3 Subjects (Subject I: Mathematics, Subject II: Physics, Subject III: Chemistry).
 Each Part has two sections (Section 1 & Section 2).
- **3.** Section 1 contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.
- **4. Section 2** contains **5 Numerical Value Type Questions**. The answer to each question is an **integer** ranging from 0 to 999.
- 5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.
- 6. On completion of the test, the candidate must hand over the Answer Sheet to the **Invigilator** on duty in the Room/Hall. **However, the candidates are allowed to take away this Test Booklet with them**.

Marking Scheme

- **1. Section 1:** +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.
- 2. Section 2: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.

SUBJECT I: MATHEMATICS

MARKS: 100

(4)

5

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

1. Let f: $R - \{0\} \to R$ be a function such that $f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}$.

If the $\lim_{x \to 0} \left(\frac{1}{\alpha x} + f(x) \right) = \beta$; $\alpha, \beta \in R$, then $\alpha + 2\beta$ is equal to: (1) 3 (2) 4 (3) 6

2. For a statistical data x_1, x_2, \ldots, x_{10} of 10 values, a student obtained the mean as 5.5 and $\sum_{i=1}^{10} x_i^2 = 371$. He later found that he had noted two values in the data incorrectly as 4 and 5, instead of

the correct values 6 and 8, respectively. The variance of the corrected data is:

(1) 9 **(2)** 7 **(3)** 4 **(4)** 5

3. Let $S_n = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots$ upto *n* terms. If the sum of the first six terms of an A.P. with first term

-*p* and common difference *p* is $\sqrt{2026 S_{2025}}$, then the absolute difference between 20th and 15th terms of the A.P. is:

4. If α and β are the roots of the equation $2z^2 - 3z - 2i = 0$, where $i = \sqrt{-1}$, then

$$16.\operatorname{Re}\left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}}\right).\operatorname{Im}\left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}}\right) \text{ is equal to:}$$

$$(1) \quad 398 \quad (2) \quad 409 \quad (3) \quad 441 \quad (4) \quad 312$$

5. For some $n \neq 10$, let the coefficients of the 5th, 6th and 7th terms in the binomial expansion of $(1+x)^{n+4}$ be in A.P. Then the largest coefficient in the expansion of $(1+x)^{n+4}$ is:

(1) 10 **(2)** 20 **(3)** 35 **(4)** 70

6. *A* and *B* alternately throw a pair of dice. *A* wins if he throws a sum of 5 before *B* throws a sum of 8, and *B* wins if he throws a sum of 8 before *A* throws a sum of 5. The probability, that *A* wins if *A* makes the first throw, is:

(1) $\frac{8}{19}$ (2) $\frac{9}{17}$ (3) $\frac{8}{17}$ (4) $\frac{9}{19}$

7. Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{2}\right)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b), be $\frac{7}{4}$.

Then the absolute difference of the eccentricities of two such ellipses is:

(1)
$$\frac{1-\sqrt{3}}{\sqrt{2}}$$
 (2) $\frac{1-2\sqrt{2}}{\sqrt{3}}$ (3) $\frac{3-2\sqrt{2}}{3\sqrt{2}}$ (4) $\frac{3-2\sqrt{2}}{2\sqrt{3}}$

8.	If the	system of equ	ations					
	2x - 3	y + z = 4						
	5x + 2	$\lambda y + 3z = 12$						
	100 <i>x</i>	$-47y + \mu z = 2$	212,					
	has ii	has infinitely many solutions, then $\mu - 2\lambda$ is equal to:						
	(1)	57	(2)	56	(3)	59	(4)	55
9.	$\lim_{x\to 0} c$	$\operatorname{osec} x \left(\sqrt{2 \cos^2} \right)$	$x^2 + 3\cos x$	$-\sqrt{\cos^2 x} +$	$rac{\sin x+4}{ m big}$ is:			
	(1)	$-\frac{1}{2\sqrt{5}}$	(2)	0	(3)	$\frac{1}{2\sqrt{5}}$	(4)	$\frac{1}{\sqrt{15}}$
10.	Let ci	rcle C be the i	image of x^2	$+y^{2}-2x +$	4y - 4 = 0 in	the line $2x$	-3y + 5 = 0 a	and A be the point on C
	such that OA is parallel to x – axis and A lies on the right hand side of the centre O of C.							
	If $B(e$	α, β , with $\beta <$	4, lies on C	such that	the length of t	he arc <i>AB</i> i	s $(1/6)^{th}$ of	the perimeter of C , then
	$\beta - \sqrt{3}$	$\bar{\beta}\alpha$ is equal to	:					
	(1)	3	(2)	4	(3)	$3 + \sqrt{3}$	(4)	$4-\sqrt{3}$
11.	The p	roduct of all t	he rational	roots of the	e equation (x^2)	$-9x+11\Big)^2$	-(x-4)(x-4)	5) = 3, is equal to:
	(1)	7	(2)	28	(3)	21	(4)	14
12.	Let f	$f(x) = \frac{2^{x+2}}{2^{2x+1}+2}$	$\frac{+16}{2^{x+4}+32}$. 1	hen the va	lue of $8\left(f\left(\frac{1}{15}\right)\right)$	$+ f\left(\frac{2}{15}\right) + f\left(\frac{2}{15$	$+\ldots+f\left(\frac{59}{15}\right)$	is equal to:
	(1)	118	(2)	102	(3)	92	(4)	108
13.	Let a	$\hat{i} = \hat{i} + 2\hat{j} + 3\hat{k},$	$\vec{b} = 3\hat{i} + \hat{j} -$	\hat{k} and $ec{c}$ b	be three vector	rs such tha	at \vec{c} is copla	nar with \vec{a} and \vec{b} . If the
	vector \vec{c} is perpendicular to \vec{b} and $\vec{a}.\vec{c} = 5$, then $ \vec{c} $ is equal to:							
	(1)	$\sqrt{\frac{11}{6}}$	(2)	$\frac{1}{3\sqrt{2}}$	(3)	18	(4)	16
14.	Let th	ne line passin	g through t	he points ((-1, 2, 1) and p	parallel to t	he line $\frac{x-1}{2}$	$=\frac{y+1}{3}=\frac{z}{4}$ intersect the
	line -	$\frac{x+2}{3} = \frac{y-3}{2} =$	$\frac{z-4}{1}$ at the	e point <i>P</i> . 1	Then the dista	nce of <i>P</i> from	m the point @	Q(4, -5, 1) is:
	(1)	$5\sqrt{5}$	(2)	$5\sqrt{6}$	(3)	5	(4)	10
15.	Let in	$a \Delta ABC$, the	e length of	the side AC	be 6, the ver	tex <i>B</i> be $(1,$	(2,3) and th	e vertices A , C lie on the
			_		(in sq. units) o			
	(1)	17	(2)	21	(3)	42	(4)	56
16.	Let y	= y(x) be the	solution of	the differen	ntial equation	$\left(xy-5x^2\sqrt{xy}\right)$	$\overline{1+x^2}$ $dx + (1)$	$+x^2\Big)dy=0, y(0)=0.$
	Then	Then $y(\sqrt{3})$ is equal to:						
	(1)	$\sqrt{\frac{14}{3}}$	(2)	$\sqrt{\frac{15}{2}}$	(3)	$2\sqrt{2}$	(4)	$\frac{5\sqrt{3}}{2}$
							a ath a	nuone (Mouning Chift)

17. Consider the region
$$R = \left\{ (x, y) : x \le y \le 9 - \frac{11}{3} x^2, x \ge 0 \right\}.$$

The area, of the largest rectangle of sides parallel to the coordinate axes and inscribed in R , is:
(1) $\frac{567}{121}$ (2) $\frac{730}{119}$ (3) $\frac{821}{123}$ (4) $\frac{625}{111}$
18. If $I(m, n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx, m, n > 0$, then $I(9, 14) + I(10, 13)$ is:
(1) $I(1, 13)$ (2) $I(9, 13)$ (3) $I(19, 27)$ (4) $I(9, 1)$
19. Let the lines $3x - 4y - \alpha = 0, 8x - 11y - 33 = 0$ and $2x - 3y + \lambda = 0$ be concurrent. If the image of the point $(1, 2)$ in the line $2x - 3y + \lambda = 0$ is $\left(\frac{57}{13}, -\frac{40}{13}\right)$, then $|\alpha\lambda|$ is equal to:

Vidyamandir Classes: Innovating for Your Success

20. The area of the region
$$\{(x, y) : x^2 + 4x + 2 \le y \le |x+2|\}$$
 is equal to:

(1)
$$\frac{20}{3}$$
 (2) $\frac{24}{5}$ (3) 5 (4) 7

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

21. Let *A* be a 3 × 3 matrix such that
$$X^T A X = O$$
 for all non-zero 3 × 1 matrices $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$.

If
$$A\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}1\\4\\-5\end{bmatrix}$$
, $A\begin{bmatrix}1\\2\\1\end{bmatrix} = \begin{bmatrix}0\\4\\-8\end{bmatrix}$, and det $(adj(2(A+I))) = 2^{\alpha} 3^{\beta} 5^{\gamma}$, $\alpha, \beta, \gamma \in N$, then $\alpha^{2} + \beta^{2} + \gamma^{2}$ is ______.

22. If for some
$$\alpha, \beta; \alpha \leq \beta, \alpha + \beta = 8$$
 and $\sec^2(\tan^{-1}\alpha) + \csc^2(\cot^{-1}\beta) = 36$, then $\alpha^2 + \beta$ is _____.

23. Let *f* be a differentiable function such that
$$2(x+2)^2 f(x) - 3(x+2)^2 = 10 \int_0^x (t+2)f(t)dt$$
, $x \ge 0$.

Then f(2) is equal to _____.

- **24.** The number of 3-digit numbers, that are divisible by 2 and 3, but not divisible by 4 and 9, is ______.
- **25.** Let $S = \{p_1, p_2, \dots, p_{10}\}$ be the set of first ten prime numbers. Let $A = S \cup P$, where *P* is the set of all possible products of distinct elements of *S*. Then the number of all ordered pairs $(x, y), x \in S, y \in A$, such that *x* divides *y*, is ______.

SUBJECT II: PHYSICS

MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE CHOICE is correct.** 26. An air bubble of radius 0.1 cm lies at a depth of 20 cm below the free surface of a liquid of density 1000 kg/m^3 . If the pressure inside the bubble is 2100 N/m² greater than the atmospheric pressure, then the surface tension of the liquid in SI unit is (use $g = 10 \text{m/s}^2$) (1) 0.25 (2)0.1 (3) 0.05 (4) 0.02 27. A satellite is launched into a circular orbit of radius 'R' around the earth. A second satellite is launched into an orbit of radius 1.03R. The time period of revolution of the second satellite is larger than the first one approximately by: 2.5%(4) (1) (2) 9% (3) 4.5% 3% 28. The amount of work done to break a big water drop of radius 'R' into 27 small drops of equal radius is 10 J. The work done required to break the same big drop into 64 small drops of equal radius will be: 15 J(1) 5J(2) (3) 20 J(4) 10 JFor an experimental expression $y = \frac{32.3 \times 1125}{27.4}$, where all the digits are significant. Then to report the 29. value of *y* we should write: (1) y = 1330(2)y = 1326.19(3) y = 1326.186 (4) y = 1326.230. A thin plano convex lens made of glass of refractive index 1.5 is immersed in a liquid of refractive index 1.2. When the plane side of the lens is silver coated for complete reflection, the lens immersed in the liquid behaves like a concave mirror of focal length 0.2 m. The radius of curvature of the curved surface of the lens is: (1) 0.20 m (2) 0.10 m (3) 0.15 m (4) 0.25 m 31. A uniform solid cylinder of mass 'm' and radius 'r' rolls along an inclined rough plane of inclination 45°. If it starts to roll from rest from the top of the plane then the linear acceleration of the cylinder axis will be: $\frac{1}{3\sqrt{2}}g$ (2) $\frac{1}{\sqrt{2}}g$ (3) $\sqrt{2}g$ (4) $\frac{\sqrt{2}g}{3}$ (1) 32. A plano-convex lens having radius of curvature of first surface 2 cm exhibits focal length of f_1 in air. Another plano-convex lens with first surface radius of curvature 3 cm has focal length of f_2 when it is immersed in a liquid of refractive index 1.2. If both the lenses are made of same glass of refractive index 1.5, the ratio of f_1 and f_2 will be: (1) 1:2(2) 3:5(3) 1:3(4) 2:333. A particle is executing simple harmonic motion with time period 2 s and amplitude 1 cm. If D and d are the total distance and displacement covered by the particle in 12.5 s, then $\frac{D}{r}$ is: 15 (1) 25(2) (3) 10 (4) 5

- **34.** What is the relative decrease in focal length of a lens for an increase in optical power by 0.1D from 2.5D? ['D' stands for dioptre]
 - **(1)** 0.40 **(2)** 0.01 **(3)** 0.1 **(4)** 0.04

35. An electron of mass '*m*' with an initial velocity $\vec{v} = v_0 \hat{i} (v_0 > 0)$ enters an electric field $\vec{E} = -E_0 \hat{k}$.

If the initial de Broglie wavelength is λ_0 , the value after time *t* would be:

(1)
$$\frac{\lambda_0}{\sqrt{1-\frac{e^2 E_0^2 t^2}{m^2 v_0^2}}}$$
 (2) λ_0 (3) $\frac{\lambda_0}{\sqrt{1+\frac{e^2 E_0^2 t^2}{m^2 v_0^2}}}$ (4) $\lambda_0 \sqrt{1+\frac{e^2 E_0^2 t^2}{m^2 v_0^2}}$

36. A force $F = \alpha + \beta x^2$ acts on an object in the x-direction. The work done by the force is 5 *J* when the object is displaced by 1 m. If the constant $\alpha = 1N$ then β will be:

(1) $10 N/m^2$ (2) $12 N/m^2$ (3) $8 N/m^2$ (4) $15 N/m^2$

- **37.** Consider the following statements:
 - (A) The junction area of solar cell is made very narrow compared to a photo diode.
 - (B) Solar cells are not connected with any external bias.
 - (C) LED is made of lightly doped p-n junction.
 - (D) Increase of forward current results in continuous increase of LED light intensity.
 - (E) LEDs have to be connected in forward bias for emission of light.

Choose the correct answer from the options given below:

- (1) (A), (C), (E) Only (2) (A), (C) Only
- (3) (B), (E) Only (4) (B), (D), (E) only

38. A car of mass '*m*' moves on a banked road having radius '*r*' and banking angle θ . To avoid slipping from banked road, the maximum permissible speed of the car is v_0 . The coefficient of friction μ between the wheels of the car and the banked road is:

(1)
$$\mu = \frac{v_0^2 + rg \tan \theta}{rg - v_0^2 \tan \theta}$$
 (2)
$$\mu = \frac{v_0^2 + rg \tan \theta}{rg + v_0^2 \tan \theta}$$

(3)
$$\mu = \frac{v_0^2 - rg \tan \theta}{rg + v_0^2 \tan \theta}$$
 (4) $\mu = \frac{v_0^2 - rg \tan \theta}{rg - v_0^2 \tan \theta}$

- **39.** A parallel plate capacitor was made with two rectangular plates, each with a length of l = 3 cm and breadth of b = 1 cm. The distance between the plates is $3 \mu m$. Out of the following, which are the ways to increase the capacitance by a factor of 10?
 - (A) $l = 30 \text{ cm}, b = 1 \text{ cm}, d = 1 \mu m$ (B) $l = 3 \text{ cm}, b = 1 \text{ cm}, d = 30 \mu m$
 - (C) $l = 6 \text{ cm}, b = 5 \text{ cm}, d = 3 \mu m$ (D) $l = 1 \text{ cm}, b = 1 \text{ cm}, d = 10 \mu m$
 - (E) $l = 5 \ cm, \ b = 2 \ cm, \ d = 1 \ \mu m$

Choose the correct answer from the options given below:

(1)	(A) Only	(2)	(B) and (D) only
(3)	(C) only	(4)	(C) and (E) only

- **40.** An ideal gas goes from an initial state to final state. During the process, the pressure of gas increases linearly with temperature.
 - (A) The work done by gas during the process is zero.
 - **(B)** The heat added to gas is different from change in its internal energy.
 - **(C)** The volume of the gas is increased.
 - **(D)** The internal energy of the gas is increased.
 - (E) The process is isochoric (constant volume process)

Choose the correct answer from the options given below:

- (1) (A), (D) and (E) only (2) (E) only
- (3) (A), (B), (C), (D) only (4) (A) and (C) only
- **41.** During the transition of electron from state A to state C of a Bohr atom, the wavelength of emitted radiation is 2000 Å and it becomes 6000 Å when the electron jumps from state B to state C. Then the wavelength of the radiation emitted during the transition of electrons from state A to state B is:
 - (1) 2000 Å (2) 4000 Å (3) 3000 Å (4) 6000 Å
- **42.** Consider a parallel plate capacitor of area A (of each plate) and separation 'd' between the plates. If E is the electric field and ε_0 is the permittivity of free space between the plates, then potential energy stored in the capacitor is:

(1)
$$\frac{3}{4}\varepsilon_0 E^2 A d$$
 (2) $\varepsilon_0 E^2 A d$ (3) $\frac{1}{2}\varepsilon_0 E^2 A d$ (4) $\frac{1}{4}\varepsilon_0 E^2 A d$

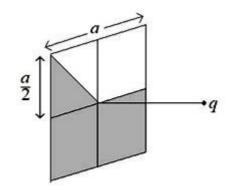
43. An alternating current is given by $I = I_A \sin \omega t + I_B \cos \omega t$. Then r.m.s current will be:

(1)
$$\sqrt{\frac{I_A^2 + I_B^2}{2}}$$
 (2) $\frac{|I_A + I_B|}{\sqrt{2}}$ (3) $\sqrt{I_A^2 + I_B^2}$ (4) $\frac{\sqrt{I_A^2 + I_B^2}}{2}$

44. An object of mass '*m*' is projected from origin in a vertical *xy* plane at an angle 45° with the x-axis with an initial velocity v_o . The magnitude and direction of the angular momentum of the object with respect to origin, when it reaches at the maximum height, will be [g is acceleration due to gravity]

(1)
$$\frac{mv_0^3}{4\sqrt{2}g}$$
 along positive z-axis (2) $\frac{mv_0^3}{2\sqrt{2}g}$ along negative z-axis

(3)
$$\frac{m w_0^3}{2\sqrt{2}g}$$
 along positive z-axis (4) $\frac{m w_0^3}{4\sqrt{2}g}$ along negative z-axis


45. The Young's double slit interference experiment is performed using light consisting of 480 nm and 600 nm wavelengths to form interference patterns. The least number of the bright fringes of 480 nm light that are required for the first coincidence with the bright fringes formed by 600 nm light is:

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

- **46.** The least count of a screw guage is 0.01 mm. If the pitch is increased by 75% and number of divisions on the circular scale is reduced by 50%, the new least count will be $___ \times 10^{-3} mm$.
- **47.** A square loop of sides a = 1 m is held normally in front of a point charge q = 1C. The flux of the electric

field through the shaded region is $\frac{5}{p} \times \frac{1}{\varepsilon_0} \frac{Nm^2}{C}$, where the value of *p* is ______.

48. A current of 5A exists in a square loop of side $\frac{1}{\sqrt{2}}m$. Then the magnitude of the magnetic field B at the centre of the square loop will be $p \times 10^{-6}T$, where, value of *p* is ______.

 $\left[\text{Take } \mu_0 = 4\pi \times 10^{-7} \, \text{Tm}A^{-1} \right].$

- **49.** A wire of resistance 9Ω is bent to form an equilateral triangle. Then the equivalent resistance across any two vertices will be ______ ohm.
- **50.** The temperature of 1 mole of an ideal monoatomic gas is increased by 50°C at constant pressure. The total heat added and change in internal energy are E_1 and E_2 , respectively. If $\frac{E_1}{E_2} = \frac{x}{9}$ then the value of *x* is ______.

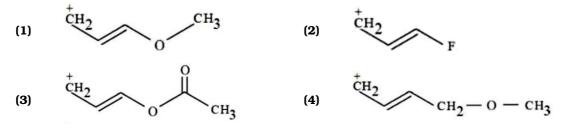
SUBJECT III: CHEMISTRY

MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

51. Preparation of potassium permanganate from MnO₂ involves two step process in which the 1st step is a reaction with KOH and KNO₃ to produce:


(1)
$$K_4[Mn(OH)_6]$$
 (2) K_2MnO_4 (3) K_3MnO_4 (4) $KMnO_4$

52. The product (A) formed in the following reaction sequence is:

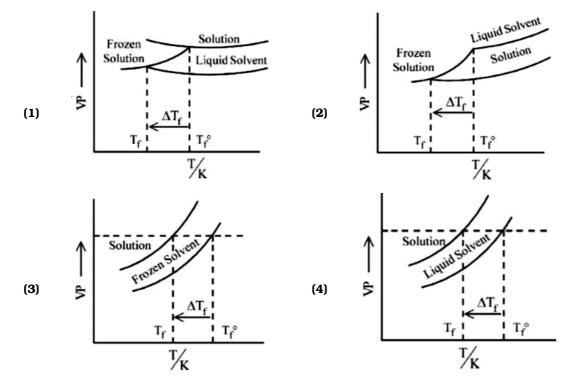
CH3-C = CH
$$\xrightarrow{i)$$
 Hg²⁺, H₂SO₄
 $\stackrel{ii)$ HCN
 $\stackrel{iii)$ HCN
 $\stackrel{iii)}{\longrightarrow}$ H₂/Ni $\xrightarrow{(A)}$ Product
(1) CH₃- $\stackrel{| C - CH_2 - OH}{\stackrel{| C - CH_2 - OH}{\stackrel{| C - CH_2 - OH}{\stackrel{| C - CH_2 - NH_2}{\stackrel{| C - CH_2 - NH_2}{\stackrel{| C - CH_2 - NH_2}{\stackrel{| C - CH_3 - CH_3 - CH_3}{\stackrel{| C - CH_3 - CH_3 - CH_3}{\stackrel{| C - CH_3 - CH_3 - CH_3 - CH_3}{\stackrel{| C - CH_3 - CH_3 - CH_3 - CH_3 - CH_3}{\stackrel{| C - CH_3 - CH_3$

(3)
$$CH_3 - CH_2 - CH - CH_2 - OH$$
 (4) $CH_3 - CH_2 - CH - CH_2 - NH_2$

53. Which one of the carbocations from the following is most stable?

- **54.** Which of the following statements are NOT true about the periodic table?
 - (A) The properties of elements are function of atomic weights.
 - **(B)** The properties of elements are function of atomic numbers.
 - (C) Elements having similar outer electronic configurations are arranged in same period.
 - (D) An element's location reflects the quantum numbers of the last filled orbital.
 - **(E)** The number of elements in a period is same as the number of atomic orbitals available in energy level that is being filled.

Choose the correct answer from the options given below:


- (1) (B), (C) and (E) only (2) (A), (C) and (E) only
- (3) (D) and (E) only (4) (A) and (E) only

55. Which of the following ions is the strongest oxidizing agent?

(Atomic Number of Ce = 58, Eu = 63, Tb = 65, Lu = 71)

(1) Ce^{3+} (2) Lu^{3+} (3) Eu^{2+} (4) Tb^{4+}

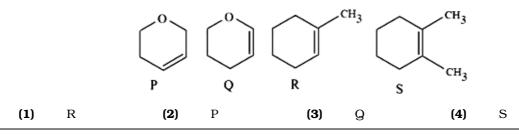
- **56.** The large difference between the melting and boiling points of oxygen and sulphur may be explained on the basis of:
 - (1) Electron gain enthalpy (2) Electronegativity
 - (3) Atomicity (4) Atomic size
- **57.** Consider the given plots of vapour pressure (VP) vs temperature (T/K). Which amongst the following options is correct graphical representation showing ΔT_f , depression in the freezing point of a solvent in a solution?

- **58.** Let us consider an endothermic reaction which is non-spontaneous at the freezing point of water. However, the reaction is spontaneous at boiling point of water. Choose the correct option.
 - (1) Both ΔH and ΔS are (+ve) (2) ΔH is (+ve) but ΔS (-ve)
 - (3) Both \triangle H and \triangle S are (-ve) (4) \triangle H is (-ve) but \triangle S (+ve)

59. Which of the following statement is true with respect to H_2O , NH_3 and CH_4 ?

- (A) The central atoms of all the molecules are sp^3 hybridized.
- **(B)** The H-O-H, H-N-H and H-C-H angles in the above molecules are 104.5° , 107.5° and 109.5° , respectively.
- (C) The increasing order of dipole moment is $CH_4 < NH_3 < H_2O$.
- (D) Both H_2O and NH_3 are Lewis acids and CH_4 is a Lewis base.
- **(E)** A solution of NH_3 in H_2O is basic. In this solution NH_3 and H_2O act as Lowry-Bronsted acid and base respectively.

Choose the correct answer from the options given below:


- (1) (A), (D) and (E) only (2) (A), (B), (C) and (E) only
- (3) (A), (B) and (C) only (4) (C), (D) and (E) only

Vidyamandir Classes: Innovating for Your Success

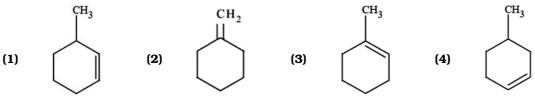
60.		Which of the following linear combination of atomic orbitals will lead to formation of molecular orbitals						
		nonuclear diatomic molecules [internuclear axis in z -direction]?						
	(A)	$2 p_z$ and $2 p_x$	(B)	2s and 2p _x				
	(C)	$3d_{xy}$ and $3d_{x^2-y^2}$	(D)	2 <i>s</i> and 2 p _z				
	(E)	$2 p_z$ and $3 d_{x^2 - y^2}$						
	Choose	e the correct answer from the options given below:						
	(1)	(A) and (B) only	(2)	(D) only				
	(3)	(E) only	(4)	(C) and (D) only				
61.	For a p	reaction, $N_2 O_{5(g)} \rightarrow 2 NO_{2(g)} + \frac{1}{2} O_{2(g)}$ in a constant volume container, no products were present						
	initially	y. The final pressure of the system when	50% of 1	reaction gets completed is:				
	(1)	$\frac{5}{2}$ times of initial pressure 2	(2)	$\frac{7}{4}$ times of initial pressure				
	(3)	5 times of initial pressure	(4)	$\frac{7}{2}$ times of initial pressure				
62.	The ca	rbohydrate "Ribose" present in DNA, is:						
	(A)	A pentose sugar		present in pyranose from				
	(C)	in "D" configuration	(D)	a reducing sugar, when free				
	(E)	in ∞ – anomeric form						
	Choose	e the correct answer from the options given below:						
	(1)	(B), (D) and (E) only		(A), (B) and (E) only				
	(3)	(A), (D) and (E) only	(4)	(A), (C) and (D) only				
63.	Given	iven below are two statements:						
	Staten	Statement I: The conversion proceeds well in the less polar medium.						
	CH ₃ -0	$_{3}$ -CH ₂ -OH+Cl ⁽⁻⁾						
	Staten	Statement II: The conversion proceeds well in the more polar medium.						
	$CH_3 - CH_2 - CH_2 - CH_2 - CI \xrightarrow{R} CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - R_1 = R CI^{(-)}$							

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are false
- (4) Statement I is false but Statement II is true
- **64.** Following are the four molecules "P", "Q", "R" and "S". Which one among the four molecules will react with H– Br_(aq) at the fastest rate?

65. K_{sp} for Cr(OH)₃ is 1.6×10^{-30} . What is the molar solubility of this salt in water?

(1)
$$\sqrt[5]{1.8 \times 10^{-30}}$$
 (2) $\sqrt[2]{1.6 \times 10^{-30}}$ (3) $\frac{1.8 \times 10^{-30}}{27}$ (4) $\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$


66. One mole of the octahedral complex compound $Co(NH_3)_5 Cl_3$ give 3 moles of ions on dissolution in water. One mole of the same complex reacts with excess of $AgNO_3$ solution to yield two moles of $AgCl_{(s)}$. The structure of the complex is:

- (1) $[Co(NH_3)_4 Cl_2]. Cl. NH_3$ (2) $[Co(NH_3)_5 Cl] Cl_2$
- (3) $[Co(NH_3)_3 Cl_3] \cdot 2 NH_3$

67. Aman has been asked to synthesise the molecule

(4)
$$[Co(NH_3)_4 Cl] \cdot Cl_2 \cdot NH_3$$

e $C - CH_3$ (x). He thought of preparing the

molecule using an aldol condensation reaction. He found a few cyclic alkenes in his laboratory. He thought of performing ozonolysis reaction on alkene to produce a dicarbonyl compound followed by aldol reaction to prepare "x". Predict the suitable alkene that can lead to the formation of "x".

68. For the given cell $\operatorname{Fe}_{(aq)}^{2+} + \operatorname{Ag}_{(aq)}^{+} \to \operatorname{Fe}_{(aq)}^{3+} + \operatorname{Ag}(s)$

The standard cell potential of the above reaction is:

Given:
$$Ag^+ + e^- \rightarrow Ag$$

 $Fe^{2+} + 2e^- \rightarrow Fe$
 $Fe^{3+} + 3e^- \rightarrow Fe$
(1) $x + y - z$
(2) $x + 2y$
(3) $x + 2y - 3z$
(4) $y - 2x$

- **69.** Which of the following arrangements with respect to their reactivity in nucleophilic addition reaction is correct?
 - (1) acetophenone < p-tolualdehyde < benzaldehyde < p-nitrobenzaldehyde
 - (2) acetophenone < benzaldehyde < p-tolualdehyde < p-nitrobenzaldehyde
 - (3) p-nitrobenzaldehyde < benzaldehyde < p-tolualdehyde < acetophenone
 - (4) benzaldehyde < acetophenone < p-nitrobanzaldehyde < p-tolualdehyde
- **70.** Given below are two statements I and II.

Statement I: Dumas method is used for estimation of "Nitrogen" in an organic compound.

Statement II: Dumas method involves the formation of ammonium sulphate by heating the organic compound with conc H_2SO_4 .

In the light of the above statements, choose the correct answer from the options give below:

- (1) Statement I is false but Statement II is true
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

71. $37.8 \text{ g N}_2 \text{O}_5$ was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K

 $2 N_2 O_{5(g)} \rightleftharpoons 2 N_2 O_{4(g)} + O_{2(g)}$

The total pressure at equilibrium was found to be 18.65 bar.

Then, $K_n = ___ \times 10^{-2}$ [nearest integer]

Assume N_2O_5 to behave ideally under these conditions.

Given: R = 0.082 bar L mol⁻¹ K⁻¹

72. Xg of benzoic acid on reaction with aq NaHCO₃ released CO₂ that occupied 11.2 L volume at STP.

X is _____ g.

73. Standard entropies of X_2 , Y_2 and XY_5 are 70, 50 and 110 JK⁻¹ mol⁻¹ respectively. The temperature in Kelvin at which the reaction

$$\frac{1}{2}X_2 + \frac{5}{2}Y_2 \rightleftharpoons XY_5 \ \Delta H^\Theta = -35 \text{ kj mol}^{-1}$$

will be at equilibrium is _____ (Nearest integer)

74. Consider the following reaction occurring in the blast furnace:

 $\operatorname{Fe_3O_{4(s)}} + 4\operatorname{CO}(g) \rightarrow 3\operatorname{Fe_{(1)}} + 4\operatorname{CO_2}(g)$

'x' kg of iron is produced when 2.32×10^3 kg Fe_3O_4 and 2.8×10^2 kg CO are bought together in the furnace. The value of 'x' is ______ . (nearest integer)

{Given: molar mass of $Fe_3O_4 = 232 \text{ g mol}^{-1}$

molar mass of $CO = 28 \text{ g mol}^{-1}$

molar mass of $Fe = 56 \text{ g mol}^{-1}$

75. Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with $K_4[Fe(CN)_6]$ is ______.

 Cu^{2+} , Fe^{3+} , Ba^{2+} , Ca^{2+} , NH_4^{++} , Mg^{2+} , Zn^{2+}