

JEE Main - 2025

23rd JANUARY 2025 (Morning Shift)

General Instructions

- 1. The test is of **3 hours** duration and the maximum marks is **300**.
- 2. The question paper consists of **3 Subjects** (Subject I: **Mathematics**, Subject II: **Physics**, Subject III: **Chemistry**). Each Part has **two** sections (Section 1 & Section 2).
- **3. Section 1** contains **20 Multiple Choice Questions**. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE CHOICE** is correct.
- **4. Section 2** contains **5 Numerical Value Type Questions**. The answer to each question is an **integer** ranging from 0 to 999.
- 5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.
- 6. On completion of the test, the candidate must hand over the Answer Sheet to the **Invigilator** on duty in the Room/Hall. **However, the candidates are allowed to take away this Test Booklet with them**.

Marking Scheme

- **1. Section** -1: +4 for correct answer, -1 (negative marking) for incorrect answer, 0 for all other cases.
- 2. Section 2: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.

SUBJECT I: MATHEMATICS MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE CHOICE is correct.**

1.	If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of the sum of the
	next four terms, then the sum of the first 20 terms is equal to:

(1) -1080

-1020

(3)

-1200

(4)-120

2. One die has two faces marked 1, two faces marked 2, one face marked 3 and one face marked 4. Another die has one face marked 1. two faces marked 2, two faces marked 3 and one face marked 4. The probability of getting the sum of numbers to be 4 or 5, when both the dice are thrown together, is:

(2)

Let $\left| \frac{z-i}{2z+i} \right| = \frac{1}{3}$, $z \in C$, be the equation of a circle with center at C. If the area of the triangle, whose 3.

vertices are at the points (0, 0), $\it C$ and ($\it \alpha$,0) is 11 square units, then $\it \alpha^2$ equals:

(1) 100

50

4. If the system of equations

 $(\lambda - 1)x + (\lambda - 4)y + \lambda z = 5$

 $\lambda x + (\lambda - 1)y + (\lambda - 4)z = 7$

 $(\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9$

has infinitely many solutions, then $\lambda^2 + \lambda$ is equal to:

(1)

(2)

(3)

10

Let the position vectors of the vertices A, B and C of a tetrahedron ABCD be $\hat{i} + 2\hat{j} + \hat{k}$, $\hat{i} + 3\hat{j} - 2\hat{k}$ and **5**. $2\hat{i} + \hat{j} - \hat{k}$ respectively. The altitude from the vertex D to the opposite face ABC meets the median line segment through A of the triangle ABC at the point E. If the length of AD is $\frac{\sqrt{110}}{3}$ and the volume of the

tetrahedron is $\frac{\sqrt{805}}{6\sqrt{2}}$, then the position vector of *E* is:

 $\frac{1}{6} \left(12\hat{i} + 12\hat{j} + \hat{k} \right)$ (1)

(2) $\frac{1}{12} \left(7\hat{i} + 4\hat{j} + 3\hat{k} \right)$

 $\frac{1}{2}(\hat{i}+4\hat{j}+7\hat{k})$ (3)

(4) $\frac{1}{2} (7\hat{i} + 12\hat{j} + \hat{k})$

6. The number of words, which can be formed using all the letters of the word "DAUGHTER", so that all the vowels never come together. is:

35000

(3) 34000 (4) 37000

If $\frac{\pi}{2} \le x \le \frac{3\pi}{4}$, then $\cos^{-1}\left(\frac{12}{13}\cos x + \frac{5}{13}\sin x\right)$ is equal to: 7.

 $x + \tan^{-1}\frac{4}{5}$ (2) $x - \tan^{-1}\frac{4}{3}$ (3) $x - \tan^{-1}\frac{5}{12}$ (4) $x + \tan^{-1}\frac{5}{12}$

If the function 8.

$$f(x) = \begin{cases} \frac{2}{x} \left\{ \sin(k_1 + 1)x + \sin(k_2 - 1)x \right\}, & x < 0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left(\frac{2 + k_1 x}{2 + k_2 x} \right), & x > 0 \end{cases}$$

is continuous at x = 0, then $k_1^2 + k_2^2$ is equal to:

(1)

(3) 20 (4)10

9. Let the arc AC of a circle subtend a right angle at the centre O. If the point B on the arc AC, divides the arc AC such that $\frac{\text{length of arc }AB}{\text{length of arc }BC} = \frac{1}{5}$, and $\overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}$, then $\alpha + \sqrt{2}(\sqrt{3} - 1)\beta$ is equal to:

 $2\sqrt{3}$ (1)

 $2+\sqrt{3}$ (3) $2-\sqrt{3}$ (4) $5\sqrt{3}$

Let $I(x) = \int \frac{dx}{(x-11)^{13}(x+15)^{13}}$. If $I(37) - I(24) = \frac{1}{4} \left(\frac{1}{b^{13}} - \frac{1}{c^{13}}\right)$, $b, c \in \mathbb{N}$, then 3(b+c) is equal to: 10.

(1) 40 **(2)**

(3)

(4)

Let P be the foot of the perpendicular from the point Q(10, -3, -1) on the line $\frac{x-3}{7} = \frac{y-2}{1} = \frac{z+1}{2}$. 11.

Then the area of the right-angled triangle PQR, where R is the point (3, -2, 1) is:

 $8\sqrt{15}$ (1)

(3)

 $9\sqrt{15}$

12. Let $R = \{(1, 2), (2, 3), (3, 3)\}$ be a relation defined on the set $\{1, 2, 3, 4\}$. Then the minimum number of elements, needed to be added in R so that R becomes an equivalence relation, is:

The value of $\int_{2}^{e^{4}} \frac{1}{x} \left[\frac{e^{((\log_{e} x)^{2} + 1)^{-1}}}{e^{((\log_{e} x)^{2} + 1)^{-1}} + e^{((6 - \log_{e} x)^{2} + 1)^{-1}}} \right] dx \text{ is:}$ 13.

(1)

 e^2

(2)

(3)

2

(4) log_e 2

14. Marks obtains by all the students of class 12 are presented in a frequency distribution with classes of equal width. Let the median of this grouped data be 14 with median class interval 12-18 and median class frequency 12. If the number of students whose marks are less than 12 is 18, then the total number of students is:

(1)

52

Let $f(x) = \log_e x$ and $g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1}$. Then the domain of *fog* is: 15.

(1) \mathbb{R} **(2)** $[0,\infty)$

(4) $[1,\infty)$

Let the area of a $\triangle PQR$ with vertices P(5, 4), Q(-2, 4) and R(a, b) be 35 square units. If its orthocenter 16. and centroid are $O\left(2,\frac{14}{5}\right)$ and C(c,d) respectively, then c+2d is equal to:

(1) 3

(3)

17. If A, B and $(adj(A^{-1}) + adj(B^{-1}))$ are non-singular matrices of same order, then the inverse of $A(adj(A^{-1}) + adj(B^{-1}))^{-1}B$, is equal to:

(1)
$$adj(B^{-1}) + adj(A^{-1})$$
 (2) $\frac{1}{|AB|}(adj(B) + adj(A))$

(3)
$$\frac{AB^{-1}}{|A|} + \frac{BA^{-1}}{|B|}$$
 (4)
$$AB^{-1} + A^{-1}B$$

18. The value of $(\sin 70^{\circ})(\cot 10^{\circ} \cot 70^{\circ} - 1)$ is:

19. If the line 3x - 2y + 12 = 0 intersects the parabola $4y = 3x^2$ at the points *A* and *B*, then at the vertex of the parabola, the line segment *AB* subtends an angle equal to:

(1)
$$\tan^{-1}\left(\frac{9}{7}\right)$$
 (2) $\tan^{-1}\left(\frac{4}{5}\right)$ (3) $\tan^{-1}\left(\frac{11}{9}\right)$ (4) $\frac{\pi}{2} - \tan^{-1}\left(\frac{3}{2}\right)$

20. Let a curve y = f(x) pass through the points (0, 5) and $(log_e 2, k)$. If the curve satisfies the differential equation $2(3+y)e^{2x} dx - (7+e^{2x})dy = 0$, then k is equal to:

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

21. The sum of all rational terms in the expansion of $\left(1+2^{\frac{1}{3}}+3^{\frac{1}{2}}\right)^6$ is equal to_____.

Let the circle C touch the line x-y+1=0, have the centre on the positive x-axis, and cut off a chord of length $\frac{4}{\sqrt{13}}$ along the line -3x+2y=1. Let H be the hyperbola $\frac{x^2}{\alpha^2}-\frac{y^2}{\beta^2}=1$. Whose one of the foci is the centre of C and the length of the transverse axis is the diameter of C. Then $2\alpha^2+3\beta^2$ is equal to

23. If the set of all values of a, for which the equation $5x^3 - 15x - a = 0$ has three distinct real roots, is the interval (α, β) , then $\beta - 2\alpha$ is equal to _____.

24. If the area of the larger portion bounded between the curves $x^2 + y^2 = 25$ and y = |x - 1| is $\frac{1}{4}(b\pi + c), b, c \in \mathbb{N}$, then b + c is equal to_____.

25. If the equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ has equal roots, where a+c=15 and $b=\frac{36}{5}$, then a^2+c^2 is equal to _____.

SUBJECT II: PHYSICS MARKS: 100

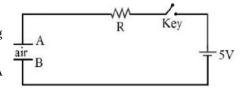
SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

26. What is the lateral shift of a ray refracted through a parallel-sided glass slab of thickness 'h' in terms of the angle of incidence 'i' and angle of refraction 'r', if the glass slab is placed in air medium?

 $\frac{h\sin(i-r)}{\cos r}$

(2) $\frac{h\tan(i-r)}{\tan r}$


3)

 $\frac{h\cos(i-r)}{\sin r}$

27. Identify the valid statements relevant to the given circuit at the instant when the key is closed.

A. There will be no current through resistor R.

B. There will be maximum current in the connecting wires.

C. Potential difference between the capacitor plates A and B is minimum.

D. Charge on the capacitor plates is minimum.

Choose the correct answer from the options given below:

(1) C, D Only

(2) B, C, D only

(3) A, C only

(4) A, B, D only

A solid sphere of mass 'm' and radius 'r' is allowed to roll without slipping from the highest point of an inclined plane of length 'L' and makes an angle 30° with the horizontal. The speed of the particle at the bottom of the plane is v_1 . If the angle of inclination is increased to 45° while keeping L constant. Then

the new speed of the sphere at the bottom of the plane is $\,v_2$. The ratio $\,v_1^2:v_2^2\,$ is:

(1) $1:\sqrt{3}$

(2) 1:2

(3) $1:\sqrt{2}$

(4) 1:3

29. A gun fires a lead bullet of temperature 300 K into a wooden block. The bullet having melting temperature of 600 K penetrates into the block and melts down. If the total heat required for the process is 625 J, then the mass of the bullet is ______grams.

(Latent heat of fusion of lead = $2.5 \times 10^4 J K g^{-1}$ and specific heat capacity of lead = $125 J K g^{-1} K^{-1}$)

(1) 15

(2) 5

(3) 10

(4) 20

30. The electric flux is $\phi = \alpha \sigma + \beta \lambda$

where λ and σ are linear and surface charge density, respectively. $\left(\frac{\alpha}{\beta}\right)$ represents:

(1) electric field

(2)

displacement

(3) area

(4) charge

31. Refer to the circuit diagram given in the figure. which of the following observations are correct?

A. Total resistance of circuit is 6Ω

B. Current in Ammeter is 1A

C. Potential across AB is 4 Volts.

D. Potential across CD is 4 Volts

E. Total resistance of the circuit is 8Ω .

Choose the correct answer from the options given below:

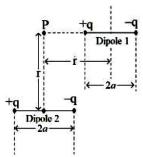
(1) A, B and C Only

(2) A, C and D Only

(3) A, B and D Only

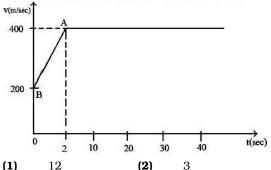
(4) B, C and E Only

32 .										
							ed down and			
released to execute simple harmonic oscillations. The time period of oscillations is $y\pi \times$						10^{-2} s, where				
	the va	alue of y is: (Acc	eleration	due to gra	wity, g	= 10 m	$/\mathrm{s}^2$, density	of water=	10^3 kg/m^3)
	(1)	6	(2)	4		(3)	2	(4)	1	
33.	A rad	ioactive nucleus	s n_2 has	3 times th	ie deca	y const	ant as compa	red to the	decay consta	nt of another
	radioactive nucleus n_1 . If initial number of both nuclei are the same, what is the ratio of number of									
	nucle	i of n_2 to the n	umber of	nuclei of 1	n_1 , afte	er one h	alf-life of n_1 ?			
	(1)	1/4	(2)	4		(3)	1/8	(4)	8	
34. A spherical surface of radius of curvature R , separates air from glass (refractive index of curvature is in the glass medium. A point object ' O ' placed in air on the optic axis that its real image is formed at 'I' inside glass. The line OI intersects the spherical $PO = PI$. The distance PO equals to:					otic axis of th	ie surface, so				
	(1)	2R	(2)	1.5R		(3)	5R	(4)	3R	
35 .	The p	osition of a par	ticle movi	ing on <i>x</i> -a	xis is g	given by	$x(t) = A \sin t$	$+B\cos^2 t$	$-Ct^2 + D$, wh	ere t is time.
	The d	The dimension of $\frac{ABC}{D}$ is:								
	(1)	L	(2)	L^2		(3)	L^3T^{-2}	(4)	L^2T^{-2}	
36.	Consi	der a moving co	oil galvand	omenter (M	ICG):					
	A.	The torsional	l constant	t in movins	g coil g	alvanon	neter has dim	entions [N	$\mathbb{L}^2\mathrm{T}^{-2}$	
								_		
	В.			•			essarily increa			•
	C.						e (2 <i>N</i>), then th	Ü	•	
	D. MCG can be converted into an ammeter by introducing a shun parallel with galvanometer.									
		parallel with	galvanom	neter.		ici by	introducing a	Situit 16	sistance of R	arge value in
	E.	-	_				on number of			arge value in
		-	sitivity of I	MCG depe	nds inv	versely (on number of			arge value in
		Current sens	sitivity of I nswer fror	MCG depe	nds inv	versely (on number of			
37.	Choo:	Current sens	sitivity of I nswer fror (2)	MCG dependent the option	nds inv	versely o	on number of w:	turns of co	oil.	
37.	Choo:	Current sens se the correct ar A, B, E Only	sitivity of I nswer fror (2)	MCG dependent the option	nds inv	versely o	on number of w: A, D Only	turns of co	oil.	
37.	Choo:	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie	sitivity of I nswer from (2) h LIST-II.	MCG dependent the option B, D, E	nds inv	versely of en below (3)	on number of w: A, D Only	turns of co	oil.	
37.	(1) Matcl	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an i	sitivity of I nswer fror (2) h LIST-II. es inverse ideal gas.	MCG dependent the option B, D, E	nds invons giv	versely of en below (3) LIST- Adiab	on number of w: A, D Only II atic process	turns of co	oil.	
37.	(1) Match	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an in Heat absorbed	nswer from (2) h LIST-II. es inverse ideal gas. d goes par	MCG dependent the option B, D, E	nds invons give	versely of en below (3) LIST- Adiab	on number of w: A, D Only	turns of co	oil.	
37.	(1) Matcl	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an i Heat absorbed increase inter-	sitivity of I nswer from (2) h LIST-II. es inverse ideal gas. d goes par mal energ	MCG dependent the option B, D, E	nds invons giv	versely of en below (3) LIST- Adiab	on number of w: A, D Only II atic process	turns of co	oil.	
37.	(1) Matcl A. B.	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an in Heat absorbed increase interpartly to do w	es inverse ideal gas. d goes par mal energy ork.	MCG dependent the option B, D, E ely with ertly to y and	nds invons giv Only I. II.	cersely (en below (3) LIST- Adiab Isoche	on number of w: A, D Only II atic process oric process	(4)	oil.	
37.	(1) Matcl	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an i Heat absorbed increase interpartly to do w Heat is neithe	estitivity of Inswer from (2) h LIST-II. es inverse ideal gas. d goes par mal energy rork. er absorbe	MCG dependent the option B, D, E ely with ertly to y and	nds invons giv	cersely (en below (3) LIST- Adiab Isoche	on number of w: A, D Only II atic process	(4)	oil.	
37.	(1) Matcl A. B.	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an in Heat absorbed increase interpartly to do w	sitivity of I nswer from (2) h LIST-II. es inverse ideal gas. d goes par mal energy rork. er absorbe system.	MCG dependent the option B, D, E By With the option of th	nds invons giv Only I. II.	versely of en below (3) LIST- Adiab Isocho	on number of w: A, D Only II atic process oric process	(4)	oil.	
37.	(1) Matcl A. B.	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an in Heat absorbed increase interpartly to do w Heat is neither released by a	sitivity of I nswer from (2) h LIST-II. es inverse ideal gas. d goes par mal energy rork. er absorbe system.	MCG dependent the option B, D, E By with the option by and ed nor	nds invons given Only I. II.	versely of en below (3) LIST- Adiab Isocho	on number of w: A, D Only II atic process oric process	(4)	oil.	
37.	Chood (1) Match A. B. C.	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an i Heat absorbed increase interpartly to do w Heat is neithe released by a No work is do	estivity of Inswer from (2) h LIST-II. es inverse ideal gas. d goes parmal energy fork. er absorbe system. ne on or h	MCG depend the option B, D, E By With the option of the o	nds invons give Only I. II. IV.	rersely of en below (3) LIST- Adiab Isocho Isotho Isoba	on number of w: A, D Only II atic process oric process ermal process	(4)	oil.	
37.	Chood (1) Match A. B. C.	Current sens se the correct ar A, B, E Only in the LIST-I with LIST-I Pressure varies volume of an in Heat absorbed increase interpartly to do with Heat is neither released by a No work is doing as.	esitivity of Inswer from (2) In LIST-II. es inverse ideal gas. Id goes par mal energy rork. er absorbe system. In e on or h	MCG depend the option B, D, E By With the option of the o	nds invons give Only I. II. IV.	rersely of en below (3) LIST- Adiab Isocho Isotho Isoba	on number of w: A, D Only II atic process oric process ermal process	(4)	oil.	
37.	Choose A. B. C. Choose	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an in Heat absorbed increase interpartly to do w Heat is neither released by a No work is do gas. se the correct ar	esitivity of Inswer from (2) h LIST-II. es inverse ideal gas. d goes par mal energe rork. er absorbe system. ne on or b	MCG depend the option B, D, E By With the option of the o	nds invons give Only I. II. IV.	rersely (en below (3) LIST- Adiab Isoche Isoba en below	on number of w: A, D Only II atic process oric process ermal process ric process	(4)	oil.	
37. 38.	Chood (1) Match A. B. C. Chood (1) (3)	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an i Heat absorbed increase interpartly to do w Heat is neither released by a No work is do gas. se the correct ar A-I, B-IV, C-I	esitivity of Inswer from (2) In LIST-II. es inverse ideal gas. Id goes par mal energy rork. er absorbe system. In e on or b Inswer from II, D-III II, D-IV	MCG depend the option B, D, E Bly with et ly and et nor by a m the option and the option and the option and the option are set as a set a	III. IV. Ons given	LIST-Adiab Isothe Isoba en belov (2) (4)	on number of w: A, D Only II atic process oric process ermal process v: A-III, B-IV, A-III, B-I, O	C-I, D-II	A, B Only	
	(1) Matcl A. B. C. Choose (1) (3) A sulfared	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an in Heat absorbed increase interpartly to do w Heat is neither released by a No work is do gas. se the correct ar A-I, B-IV, C-I A-I, B-III, C-I	esitivity of Inswer from (2) In LIST-II. es inverse ideal gas. Id goes par mal energy rork. er absorbe system. In e on or h mswer from II, D-III III, D-IV III e of mass	MCG depend the option B, D, E Ely with ely and ed nor by a muther option at the optio	III. IV. ons given	LIST-Adiab Isoche Isoba: en belov (2) (4) oving w	on number of w: A, D Only II atic process oric process ermal process v: A-III, B-IV, A-III, B-I, C ith a velocity	C-I, D-II 2-IV, D-II	oil. A, B Only	er the matter
	(1) Matcl A. B. C. Choose (1) (3) A sulfared	Current sens se the correct ar A, B, E Only the LIST-I with LIST-I Pressure varie volume of an in Heat absorbed increase interpartly to do w Heat is neither released by a No work is do gas. se the correct ar A-I, B-IV, C-I A-I, B-III, C-I D-atomic particle	esitivity of Inswer from (2) In LIST-II. es inverse ideal gas. Id goes par mal energy rork. er absorbe system. In e on or h mswer from II, D-III III, D-IV III e of mass	MCG depend the option B, D, E Ely with ely and ed nor by a muther option at the optio	III. IV. ons given	LIST-Adiab Isoche Isoba: en belov (2) (4) oving w	on number of w: A, D Only II atic process oric process ermal process v: A-III, B-IV, A-III, B-I, C ith a velocity	C-I, D-II C-IV, D-II 2.21×10 ⁶	oil. A, B Only	er the matter


39. Given below are two statements:

Statement I: The hot water flows faster than cold water.

Statement II: Soap water has higher surface tension as compared to fresh water.


In the light above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true
- **(2)** Both Statement I and Statement II are false
- Both Statement I and Statement II are true (3)
- Statement I is true but Statement II is false (4)
- 40. A point particle of charge Q is located at P along the axis of an electric dipole 1 at a distance r as shown in the figure. The point P is also on the equatorial plane of a second electric dipole 2 at a distance r. The dipoles are made of opposite charge q separated by a distance 2a. For the charge particle at P not to experience any net force, which of the following correctly describes the situation?

 $\frac{a}{r} \sim 0.5$ (1)

- 41. The motion of an airplane is represented by velocity-time graph as shown below. The distance covered by airplane in the first 30.5 second is _____

- (3)
- (4)

9

42. The electric field of an electromagnetic wave in free space is

$$\vec{E} = 57\cos[7.5\times10^6t - 5\times10^{-3}(3x+4y)](4\hat{t} - 3\hat{j})N \ / \ C.$$

The associated magnetic field in Tesla is:

(1)
$$\overline{B} = \frac{57}{3 \times 10^8} \cos[7.5 \times 10^6 t - 5 \times 10^{-3} (3x + 4y)](5\hat{k})$$

(2)
$$\overline{B} = \frac{57}{3 \times 10^8} \cos[7.5 \times 10^6 t - 5 \times 10^{-3} (3x + 4y)](\hat{k})$$

(3)
$$\overline{B} = -\frac{57}{3 \times 10^8} \cos[7.5 \times 10^6 t - 5 \times 10^{-3} (3x + 4y)](5\hat{k})$$

(4)
$$\vec{B} = -\frac{57}{3 \times 10^8} \cos[7.5 \times 10^6 t - 5 \times 10^{-3} (3x + 4y)](\hat{k})$$

- 43. Regarding self-inductance:
 - The self-inductance of the coil depends on its geometry. A.
 - В. Self-inductance does not depend on the permeability of the medium.
 - C. Self-induced e.m.f. opposes any change in the current in a circuit.
 - D. Self-inductance is electromagnetic analogue of mass in mechanics.
 - E. Work needs to be done against self-induced e.m.f. in establishing the current.

Choose the correct answer from the options given below:

(1)A, B, C, D only

A, C, D, E only

(3) A, B, C, E only

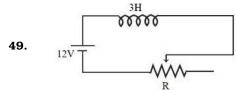
B, C, D, E only (4)

Page 7

- **44.** Consider a circular disc of radius 20 *cm* with centre located at the origin. A circular hole of radius 5 *cm* is cut from this disc in such a way that the edge of the hole touches the edge of the disc. The distance of centre of mass of residual or remaining disc from the origin will be:
 - (1) 1.5 cm (2) 1.0 cm (3) 0.5 cm (4) 2.0 cm
- 45. Given a thin convex lens (refractive index μ_2), kept in a liquid (refractive index $\mu_1, \mu_1 < \mu_2$) having radii of curvatures $\left|R_1\right|$ and $\left|R_2\right|$. Its second surface is silver polished. Where should an object be placed on the optic axis so that a real and inverted image is formed at the same place?

(1)
$$\frac{\mu_1 \left| R_1 \right| \cdot \left| R_2 \right|}{\mu_2 \left(2 \left| R_1 \right| + \left| R_2 \right| \right) - \mu_1 \sqrt{\left| R_1 \right| \cdot \left| R_2 \right|}}$$
 (2)
$$\frac{\left(\mu_2 + \mu_1 \right) \left| R_1 \right|}{\left(\mu_2 - \mu_1 \right)}$$

$$\textbf{(3)} \qquad \frac{\mu_1 \left| R_1 \right| \cdot \left| R_2 \right|}{\mu_2 \left(\left| R_1 \right| + \left| R_2 \right| \right) - \mu_1 \left| R_1 \right|} \qquad \qquad \textbf{(4)} \qquad \frac{\mu_1 \left| R_1 \right| \cdot \left| R_2 \right|}{\mu_2 \left(\left| R_1 \right| + \left| R_2 \right| \right) - \mu_1 \left| R_2 \right|}$$


SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

46. A positive ion A and a negative ion B has charges $6.67 \times 10^{-19} C$ and $9.6 \times 10^{-10} C$, and masses $19.2 \times 10^{-27} kg$ and $9 \times 10^{-27} kg$ respectively. At an instant, the ions are separated by a certain distance r. At that instant the ratio of the magnitudes of electrostatic force to gravitational force is $P \times 10^{-13}$, where the value of P is ______.

(Take
$$\frac{1}{4\pi\varepsilon_n} = 9 \times 10^9 \, Nm^2 C^{-1}$$
 and universal gravitational constant as $6.67 \times 10^{-11} \, Nm^2 kg^{-2}$)

- 47. An ideal gas initially at $0^{\circ}C$ temperature, is compressed suddenly to one fourth of its volume. If the ratio of specific heat at constant pressure to that at constant volume is 3/2, the change in temperature due to the thermodynamic process is ______ K.
- **48.** A force $f = x^2y\hat{i} + y^2\hat{j}$ acts on a particle in a plane x + y = 10. The work done by this force during a displacement from (0, 0) to (4m, 2m) is ______ Joule (round off to the nearest integer).

In the given circuit the sliding contact is pulled outwards such that electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12Ω , the value of the current in the circuit will be A.

Two particles are located at equal distance from origin. The position vectors of those are represented by $\vec{A} = 2\hat{i} + 3n\hat{j} + 2\hat{k}$ and $\vec{B} = 2\hat{i} - 2\hat{j} + 4p\hat{k}$, respectively. If both the vectors are at right angle to each other, the value of n^{-1} is ______.

SUBJECT III: CHEMISTRY

MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

- **51.** The element that does not belong to the same period of the remaining elements (modern periodic table) is:
 - (1) Iridium
- (2) Platinum
- (3) Osmium
- (4) Palladium
- **52.** The correct stability order of the following species/molecules is:

(1) q > r > p

(2) q > p :

(3) p > q > r

 $\mathbf{4)} \qquad \mathbf{r} > \mathbf{q} >$

53. Which of the following happens when NH_4OH is added gradually to the solution containing 1M A^{2+} and 1M B^{3+} ions?

Given: $K_{sp}[A(OH)_2] = 9 \times 10^{-10}$ and $K_{sp}[B(OH)_3] = 27 \times 10^{-18}$ at 298 K.

- (1) Both $A(OH)_2$ and $B(OH)_3$ do not show precipitation with NH_4OH
- (2) $A(OH)_2$ will precipitate before $B(OH)_3$
- (3) $B(OH)_3$ will precipitate before $A(OH)_2$
- (4) $A(OH)_2$ and $B(OH)_3$ will precipitate together

(2)

- **54.** Propane molecule on chlorination under photochemical condition gives two di-chloro products, "x" and "y". Amongst "x" and "y", "x" is an optically active molecule. How many tri-chloro products (consider only structural isomers) will be obtained from "x" when it is further treated with chlorine under the photochemical condition?
 - (1)

- 5
- **(3)** 2
- **(4)** 3

55. The major product of the following reaction is:

 $CH_3CH_2CH = O \xrightarrow{excess HCHO alkali} ?$

(2)
$$CH_3 - CH_2 - CH_2 - OH$$

(3)
$$CH_3 - C - CH = O$$

(4)
$$CH_3 - CH - CH = O$$
 $CH_2 - OH$

56. Match the LIST-I with LIST-II.

	LIST-I		LIST-II
	(Name reaction)		(Product obtainable)
A.	Swarts reaction	I.	Ethyl benzene
В.	Sandmeyer's reaction	II.	Ethyl iodide
C.	Wurtz Fittig reaction	III.	Cyanobenzene
D.	Finkelstein reaction	IV.	Ethyl fluoride

Choose the correct answer from the options given below:

(1) A-IV, B-III, C-I, D-II

(2) A-IV, B-I, C-III, D-II

(3) A-II, B-I, C-III, D-IV

(4) A-II, B-III, C-I, D-IV

57. Match the LIST-I with LIST-II.

	LIST-I (Classification of molecules based on octet rule))		LIST-II (Example)
A.	Molecules obeying octet rule	I.	NO, NO ₂
В.	Molecules with incomplete octet	II.	BCl ₃ , AlCl ₃
C.	Molecules with incomplete octet with odd electron	III.	H ₂ SO ₄ , PCl ₅
D.	Molecules with expanded octet	IV.	CCl ₄ , CO ₂

Choose the correct answer from the options given below:

(1) A-III, B-II, C-I, D-IV

(2) A-IV, B-II, C-I, D-III

(3) A-IV, B-I, C-III, D-II

(4) A-II, B-IV, C-III, D-I

58. The d-electronic configuration of an octahedral Co(II) complex having magnetic moment of 3.95 BM is:

(1) $t_{2\sigma}^3 e_{\sigma}^0$

(2) $t_{2g}^6 e_g^1$

(3) $e^4 t_2^3$

4) $t_{2g}^5 e_g^2$

59. Heat treatment of muscular pain involves radiation of wavelength of about 900 nm. Which spectral line of H atom is suitable for this?

Given : Rydberg constant R $_H$ = 10^5 cm $^{-1}$, h = 6.6×10^{-34} J s, c = 3×10^8 m / s)

(1) Lyman series, $\infty \to 1$

(2) Balmer series, $\infty \to 2$

(3) Paschen series, $\infty \to 3$

(4) Paschen series, $5 \rightarrow 3$

60. What amount of bromine will be required to convert 2 g of phenol into 2,4,6-tribromophenol?

(Given molar mass in $\ g \ mol^{-1}$ of C, H, O, Br are 12, 1, 16, 80 respectively)

(1) 4.0 g

(**2**) 10.22 g

3) 6.0 g

(4) 20.44 g

61. $FeO_4^{2-} \xrightarrow{+2.0V} Fe^{3+} \xrightarrow{0.8V} Fe^{2+} \xrightarrow{-0.5V} Fe^0$

In the above diagram, the standard electrode potentials are given in volts (over the arrow).

The value of $E_{FeO_4^{2-}/Fe^{2+}}^{\Theta}$ is:

(1) 1.7 V

2) 2.1 V

(**3**) 1.2 V

(4) 1.4 V

62. Given below are two statements:

Statement I: Fructose does not contain an aldehydic group but still reduces Tollen's reagent.

Statement II: In the presence of base, fructose undergoes rearrangement to give glucose.

In the light of the above statements, choose the correct answer from the options given below

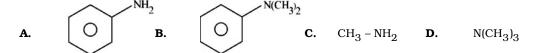
(1) Both Statement I and Statement II are true

(2) Statement I is true but Statement II is false

(3) Both Statement I and Statement II are false

(4) Statement I is false but Statement II is true

63. CrCl₃.xNH₃ can exist as a complex. 0.1 molal aqueous solution of this complex shows a depression in freezing point of 0.558°C. Assuming 100% ionisation of this complex and coordination number of Cr is 6, the complex will be (Given $K_f = 1.86 \text{ K kg mol}^{-1}$)


(1) $[Cr(NH_3)_3Cl_3]$

(2) $[Cr(NH_3)_4Cl_2]Cl$

(3) $[Cr(NH_3)_6]Cl_3$

 $(4) \qquad [Cr(NH_3)_5Cl]Cl_2$

64. Which among the following react with Hinsberg's reagent?

Choose the correct answer from options given below:

- (1) B and D only (2) A, C and E only (3) C and D Only (4) A, B and E Only
- **65.** The incorrect statement among the following is:
 - (1) NO_2 can dimerise easily
 - (2) PF_3 exists but NF_5 does not.
 - (3) SO_2 can act as an oxidizing agent, but not as a reducing agent
 - (4) PH_3 shows lower proton affinity than NH_3 .
- 66. Ice at -5°C is heated to become vapor with temperature of 110°C at atmospheric pressure. The entropy change associated with this process can be obtained from:

$$\text{(1)} \qquad \int \limits_{268\text{K}}^{383\text{K}} \text{C}_{p} \text{dT} + \frac{q_{rev}}{T}$$

$$\textbf{(3)} \qquad \int \limits_{268 \text{K}}^{273 \text{K}} C_{p,m} dT + \frac{\Delta H_m, fusion}{T_f} + \frac{\Delta H_m, vaporisation}{T_b} + \int \limits_{273 \text{K}}^{373 \text{K}} C_{p,m} dT + \int \limits_{373 \text{K}}^{383 \text{K}} C_{p,m} dT$$

(4)
$$\int_{268K}^{383K} C_p dT + \frac{\Delta H_{melting}}{273} + \frac{\Delta H_{boiling}}{373}$$

67. Given below are two statements:

 $\textbf{Statement I:} \ \text{In Lassaigne's test, the covalent organic molecules are transformed into ionic compounds.}$

 $\textbf{Statement II:} \ \ \text{The sodium fusion extract of an organic compound having N and S gives Prussian blue colour with FeSO_4 \ \ \text{and Na}_4 [\text{Fe}(\text{CN})_6] \ .$

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true
- (2) Both Statement I and Statement II are true
- (3) Statement I is true but Statement II is false
- (4) Both Statement I and Statement II are false
- **68.** The correct set of ions (aqueous solution) with same colour from the following is:

(1)
$$Ti^{4+}, V^{4+}, Mn^{2+}$$
 (2) V^{2+}, Cr^{3+}, Mn^{3+}

(3)
$$Zn^{2+}, V^{3+}, Fe^{3+}$$
 (4) $Sc^{3+}, Ti^{3+}, Cr^{2+}$

- **69.** 2.8×10^{-3} mol of CO_2 is left after removing 10^{21} molecules from its 'x' mg sample. The mass of CO_2 taken initially is: [Given: $N_A = 6.02 \times 10^{23}$ mol⁻¹]
 - (1) 150.4 mg
- (2) 196.2 mg
- **3)** 48.2 mg
- (4) 98.3 mg
- **70.** The complex that shows Facial Meridional isomerism is:
 - (1) $[Co(NH_3)_4 Cl_2]^+$

(2) $[Co(en)_2 Cl_2]^+$

(3) $[Co(NH_3)_3 Cl_3]$

(4) $[Co(en)_3]^{3+}$

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

- 71. If 1 mM solution of ethylamine produces pH = 9, then the ionization constant (K_b) of ethylamine is 10^{-X} . The value of x is _____ (nearest integer). [The degree of ionization of ethylamine can be neglected with respect to unity.]
- **72.** Consider the following sequence of reactions to produce major product (A).

$$\begin{array}{c|c} CH_3 & i)Br_2, \ Fe \\ & ii)Sn,HCl \\ \hline & iii)NaNO_2,HCl,273K \\ NO_2 & iv)H_3PO_2,H_2O & Major Product \\ \end{array}$$

Molar mass of product (A) is $___g \text{ mol}^{-1}$.

(Given molar mass in g mol⁻¹ of C: 12, H: 1, O: 16, Br: 80, N: 14, P: 31)

73. During "S" estimation, 160 mg of an organic compound gives 466 mg of barium sulphate. The percentage of Sulphur in the given compound is ______%.

(Given molar mass in $g \text{ mol}^{-1}$ of Ba: 137, S: 32, O: 16)

74. For the thermal decomposition of $N_2O_5(g)$ at constant volume, the following table can be formed, for the reaction mentioned below.

$$2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g)$$

Sr. No	Time/s	Total pressure/(atm)
1	0	0.6
2	100	'x'

x =____ $\times 10^{-3}$ atm [nearest integer]

Given : Rate constant for the reaction is $\,4.606 \times 10^{-2} \, \text{s}^{-1}\,.$

75. The standard enthalpy and standard entropy of decomposition of N_2O_4 to NO_2 are 55.0 kJ mol⁻¹ and 175.0 J/K/mol respectively. The standard free energy change for this reaction at 25°C in J mol⁻¹ is _____ (Nearest integer).