

JEE Main – 2025

22nd JANUARY 2025 (Evening Shift)

General Instructions

- 1. The test is of **3 hours** duration and the maximum marks is **300**.
- The question paper consists of 3 Subjects (Subject I: Mathematics, Subject II: Physics, Subject III: Chemistry).
 Each Part has two sections (Section 1 & Section 2).
- **3.** Section 1 contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.
- **4. Section 2** contains **5 Numerical Value Type Questions**. The answer to each question is an **integer** ranging from 0 to 999.
- 5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.
- 6. On completion of the test, the candidate must hand over the Answer Sheet to the **Invigilator** on duty in the Room/Hall. **However, the candidates are allowed to take away this Test Booklet with them**.

Marking Scheme

- **1. Section 1:** +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.
- 2. Section 2: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.

SU	BJECT I	MATHEMA	rics					MARKS: 100
				SEC	CTION-	1		
This s	section c	ontains 20 Mu	ltiple Choi	ce Questions.	Each ques	tion has 4 cho	ices (1), (2), (3) and (4), out of whic
ONLY	ONE CH	OICE is correct	•					
1.	Let ā	and \vec{b} be two	-unit vect	ors such that	the angle	between them	is $\frac{\pi}{2}$. If $\frac{\pi}{2}$	$\lambda \vec{a} + 2\vec{b}$ and $3\vec{a} - \lambda \vec{b}$ are
		Let \vec{a} and \vec{b} be two-unit vectors such that the angle between them is $\frac{\pi}{3}$. If $\lambda \vec{a} + 2\vec{b}$ and $3\vec{a} - \lambda \vec{b}$ are perpendicular to each other, then the number of values of λ in [-1, 3] is:						
	(1)	0	(2)	1	(3)	3	(4)	2
2.	Let A	= {1, 2, 3, 4} at	nd $B = \{1,$	4, 9, 16}. Then	the numb	per of many-on	e function	s $f: A \to B$ such that
	$1 \in f($	A) is equal to:						
	(1)	139	(2)	127	(3)	151	(4)	163
3.	Let a	, β , γ and δ be	the coeffi	cients of x^7 , x^5	5 , x^3 and	x respectively	in the expa	ansion of
	$\int x + y$	$(x^3 - 1)^5 + (x - 1)^5$	$-\sqrt{x^3-1}$, $x > 1$. If <i>u</i> an	d <i>v</i> satisfy	the equations	$\alpha u + \beta v =$	18, $\gamma u + \delta v = 20$, then
		equals:)					
	(1)	4	(2)	3	(3)	5	(4)	8
		$x^{2} y^{2}$		$x^{2} y^{2}$				
4.	Let E	$\frac{1}{a^2} + \frac{b^2}{b^2} = 1,$	a > b and	$H: \frac{1}{A^2} - \frac{3}{B^2} =$	= 1. Let th	e distance bet	ween the f	oci of E and the foci of H
	be 2 ₁	$\sqrt{3}$. If $a - A = 2$	2 , and the	e ratio of the ec	centricitie	s of E and H is	$s \frac{1}{3}$, then	the sum of the lengths of
		latus rectums					J	
	(1)	10	(2)	9	(3)	8	(4)	7
5.	Let a	line pass throu	ıgh two di	stinct points P	2(-2, -1, 3)	and Q, and b	e parallel (to the vector $3\hat{i} + 2\hat{j} + 2\hat{k}$.
		distance of the	e point Q f	rom the point	R(1, 3, 3) i	s 5, then the s	square of t	he area of <i>∆PQR</i> is equal
	to:	100		140		144	(1)	140
	(1)	136	(2)	140	(3)	144	(4)	148
6.	The a	rea of the regio	on enclose	d by the curves				
	(1)	5	(2)	8	(3)	$\frac{8}{3}$	(4)	$\frac{4}{3}$
		x^2 2						
7.	Let f	$f(x) = \int \frac{t^2 - 8t}{e^t}$	+15 dt, x dt	$\in R$. Then the	numbers	of local maxim	um and lo	ocal minimum points of f,
		0 ctively, are:						
	(1)	2 and 2	(2)	1 and 3	(3)	3 and 2	(4)	2 and 3
8.	Supp	ose that the nu	umber of te	erms in an A.P.	. is 2k, k e	N . If the sun		l terms of the A.P. is 40,
		um of all even	terms is 55	5 and the last t	erm of the	A.P. exceeds	the first te	rm by 27, then k is equal
	to: (1)	5	(2)	4	(3)	8	(4)	6
	(1)	5	(2)	т	(J)	0	(*)	0

9.							nd <i>P</i> (<i>B</i>	A) are the roots of the
	equati	on $12x^2 - 7x + 1$	= 0, the	n the value of $\frac{P}{P}$	$\frac{P(\bar{A}\cup\bar{B})}{P(\bar{A}\cap\bar{B})}$	is:		
		$\frac{4}{3}$					(4)	$\frac{9}{4}$
10.	Let α_{θ}	and β_{θ} be the	distinct	roots of $2x^2$ + (c	$\cos\theta x - 1$	$=0, \theta \in (0, 2\pi)$. If	m and	M are the minimum and
	the maximum values of $\alpha_{\theta}^4 + \beta_{\theta}^4$, then 16(<i>M</i> + <i>m</i>) equals:							
	(1)	24	(2)	27			(4)	25
11.	The pe	erpendicular dist	ance, of	the line $\frac{x-1}{2} = \frac{x}{2}$	$\frac{y+2}{-1} = \frac{z}{-1}$	$\frac{3+3}{2}$ from the po	int P(2,	–10, 1), is:
	(1)	$5\sqrt{2}$	(2)	$4\sqrt{3}$	(3)	3√5	(4)	6
12.	Then	$\alpha - \beta$ equals:						parts of areas α and β .
	(1)	$1+\frac{\pi}{3}$	(2)	$1+\frac{\pi}{6}$	(3)	$1+\frac{\pi}{2}$	(4)	$1+\frac{\pi}{4}$
13.						_		the parabola. If M and N
10.	are the		iculars d	lrawn from P an				of the parabola, then the
	(1)	$\frac{34\sqrt{3}}{3}$	(2)	$17\sqrt{3}$	(3)	$\frac{343\sqrt{3}}{8}$	(4)	$\frac{263\sqrt{3}}{8}$
14.	girls a		nd in a q	ueue such that a	all the gi	—		ways, in which these e boys stand together,
	(1)	72	(2)	120	(3)	96	(4)	144
15.	If the s	system of linear	equation	s:				
	<i>x</i> + <i>y</i> +	-2z = 6,						
		y + az = a + 1,						
		y+bz=2b,						
			·	·		+3b is equal to:		
16	(1) For a (16 2v2 matrix M la	(2)	22 () denote the cur	(3)	12	(4)	9 M. Let A be a 3×3
16.						-		
		such that $ A =$	2					B + trace (B) equals :
	(1)	174	(2)	132	(3)	280	(4)	56
17.	The su	um of all values of	of $\theta \in [0,$	2π] satisfying 2	$\sin^2 \theta = 0$	$\cos 2\theta$ and $2\cos \theta$	$^{2}\theta = 3 \sin^{2}\theta$	
	(1)	$\frac{\pi}{2}$	(2)	4π	(3)	π	(4)	$\frac{5\pi}{6}$

18. If $\int e^{x} \left(\frac{x \sin^{-1} x}{\sqrt{1 - x^{2}}} + \frac{\sin^{-1} x}{(1 - x^{2})^{3/2}} + \frac{x}{1 - x^{2}} \right) dx = g(x) + C$, where *C* is the constant of integration, then $g\left(\frac{1}{2}\right)$

equals:

(1)
$$\frac{\pi}{4}\sqrt{\frac{e}{2}}$$
 (2) $\frac{\pi}{4}\sqrt{\frac{e}{3}}$ (3) $\frac{\pi}{6}\sqrt{\frac{e}{2}}$ (4) $\frac{\pi}{6}\sqrt{\frac{e}{3}}$

19. If
$$\lim_{x \to \infty} \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} - \frac{x}{1+x} \right) \right)^x = \alpha$$
, then the value of $\frac{\log_e \alpha}{1 + \log_e \alpha}$ equals:

(1)
$$e^2$$
 (2) e^{-1} (3) e (4) e^{-2}

20. If x = f(y) is the solution of the differential equation

$$(1+y^2) + (x-2e^{\tan^{-1}y})\frac{dy}{dx} = 0, \ y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text{ with } f(0) = 1 \text{ , then } f\left(\frac{1}{\sqrt{3}}\right) \text{ is equal to:}$$

$$(1) \quad e^{\pi/4} \qquad (2) \quad e^{\pi/6} \qquad (3) \quad e^{\pi/12} \qquad (4) \quad e^{\pi/3}$$

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

21. If
$$\sum_{r=1}^{30} \frac{r^2 ({}^{30}C_r)^2}{{}^{30}C_{r-1}} = \alpha \times 2^{29}$$
, then α is equal to _____.

- **22.** Let A(6, 8), $B(10\cos\alpha, -10\sin\alpha)$ and $C(-10\sin\alpha, 10\cos\alpha)$, be the vertices of a triangle. If L(a, 9) and G(h, k) be its orthocenter and centroid respectively, then $(5a 3h + 6k + 100\sin 2\alpha)$ is equal to _____,
- **23.** Let the distance between two parallel lines be 5 units and a point *P* lie between the lines at a unit distance from one of them. An equilateral triangle *PQR* is formed such that *Q* lies on one of the parallel lines, while *R* lies on the other. Then $(QR)^2$ is equal to _____.
- **24.** Let $A = \{1, 2, 3\}$. The number of relations on *A*, containing (1, 2) and (2, 3), which are reflexive and transitive but not symmetric, is ______.

25. Let y = f(x) be the solution of the differential equation $\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^6 + 4x}{\sqrt{1 - x^2}}, -1 < x < 1$ such that

$$f(0) = 0$$
. If $6 \int_{-1/2}^{1/2} f(x) dx = 2\pi - \alpha$ then α^2 is equal to _____.

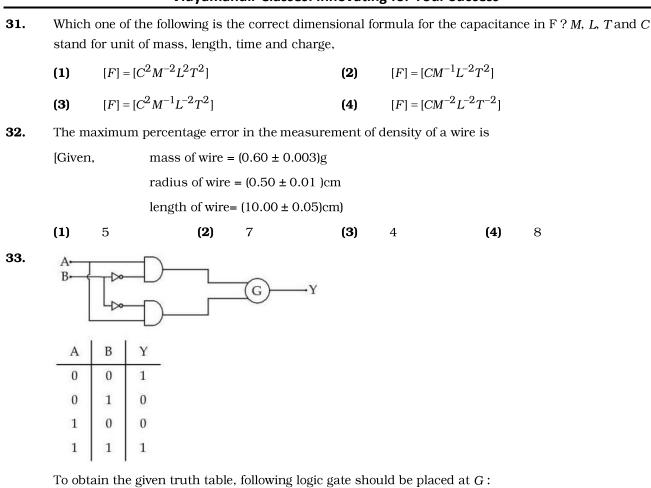
1 10

SUBJECT II: PHYSICS

SECTION-1

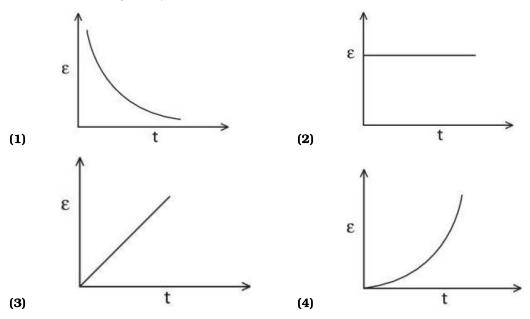
This se	ction co	ntains 20 Multip	ole Choice	e Questions. Eac	h questic	on has 4 choices	(1), (2),	(3) and (4), out of which
ONLY O	NE CHO	ICE is correct.						
26.	The tor	que due to the f	force $(2\hat{i} \cdot$	$(\hat{j}+2\hat{k})$ about	the origin	n, acting on a pa	rticle wh	ose position vector is
		\hat{k}) would be:	()				
		,		••••	$\langle \mathbf{O} \rangle$	$\hat{j} + \hat{k}$		î î
	(1)							$\hat{i}-\hat{k}$
27.			-				-	eted with maximum
	kinetic	energy of 2 eV.	If the sar	ne surface is illu	uminated	by a light sourc	e of wav	elength $rac{\lambda}{2}$, then the
						e work function		
	(1)	3 eV	(2)	6 eV	(3)	2 eV	(4)	5 eV
28.	Given b (R).	below are two st	atements	. One is labelled	l as Asse i	rtion (A) and the	e other is	s labelled as Reason
		ion (A) : In Your red to those pro	-	-	nt, the fri	nges produced b	y red lig	ht are closer as
	Reasor	1 (R) : The fringe	e width is	directly propor	tional to 1	the wavelength o	of light.	
	In the l	ight of the abov	e stateme	ents, choose the	correct	answer from the	options	given below :
	(1)	Both (A) and (F	R) are tru	e and (R) is the	correct ex	xplanation of (A)		
	(2)	(A) is true but	(R) is fals	e				
	(3)	Both (A) and (F	R) are tru	e but (R) is NOT	the corre	ect explanation o	of (A)	
	(4)	(A) is false but	(R) is tru	e				
29.			-			tic field B moves nic orbit in the fi		
	(1)	$\sqrt{rac{h}{\pi eB}}$	(2)	$\sqrt{rac{h}{2\pi eB}}$	(3)	$\sqrt{\frac{4h}{\pi eB}}$	(4)	$\sqrt{\frac{2h}{\pi eB}}$
30.	For a s	hort dipole plac	ed at orig	in <i>O</i> , the dipole	moment	P is along x-axis	s, as sho	wn in the figure. If the
	electric	potential and e	lectric fie	eld at A are V_0 a	and E_0 , r	espectively, the	n the co	rect combination of the
	electric	potential and e	lectric fie	ld, respectively,	at point	<i>B</i> on the y-axis i	is given l	by:
	y r $B2r$							

(1)


____A

·····**≻**x

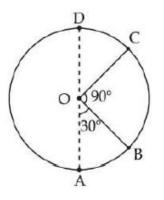
r


0

 $V_0 \text{ and } \frac{E_0}{4}$ (2) zero and $\frac{E_0}{16}$ (3) $\frac{V_0}{2} \text{ and } \frac{E_0}{16}$ (4) zero and $\frac{E_0}{8}$

(1) NOR Gate (2) AND Gate (3) NAND Gate (4) OR Gate

34. A rectangular metallic loop is moving out of a uniform magnetic field region to a field free region with a constant speed. When die loop is partially inside die magnate field, the plot of magnitude of induced *emf* (ε) with time (t) is given by:


35. A force $\vec{F} = 2\hat{i} + b\hat{j} + \hat{k}$ applied on a particle and it undergoes a displacement $\hat{i} - 2\hat{j} - \hat{k}$. What will be the value of *b*, if work done on the particle is zero.

(1)	$\frac{1}{3}$	(2)	2	(3)	$\frac{1}{2}$	(4)	0
-----	---------------	-----	---	-----	---------------	-----	---

- **36.** Given are statements for certain thermodynamic variables,
 - (A) Internal energy, volume (V) and mass (M) are extensive variables.
 - **(B)** Pressure (P), temperature (T) and density (ρ) are intensive variables.
 - (C) Volume (V), temperature (T) and density (ρ) are intensive variables.
 - **(D)** Mass (M), temperature (T) and internal energy are extensive variables.

Choose the correct answer from the options given below :

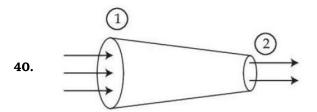
- (1) (A) and (B) Only (2) (D) and (A) Only
- (3) (C) and (D) Only (4) (B) and (C) Only
- **37.** A body of mass 100 g is moving in circular path of radius 2 m on vertical plane as shown in figure. The velocity of the body at point *A* is 10 m/s. The ratio of its kinetic energies at point *B* and *C* is :

(Take acceleration due to gravity as $10 \ m \ / \ s^2$)

(1)
$$\frac{3-\sqrt{2}}{2}$$
 (2) $\frac{3+\sqrt{3}}{2}$ (3) $\frac{2+\sqrt{3}}{3}$ (4) $\frac{2+\sqrt{2}}{3}$

38. For a diatomic gas, if $\gamma_1 = \left(\frac{C_p}{C_v}\right)$ for rigid molecules and $\gamma_2 = \left(\frac{C_p}{C_v}\right)$ for another diatomic molecules, but

also having vibrational modes. Then, which one of the following options is correct? (C_p and C_v are specific heats of the gas at constant pressure and volume)

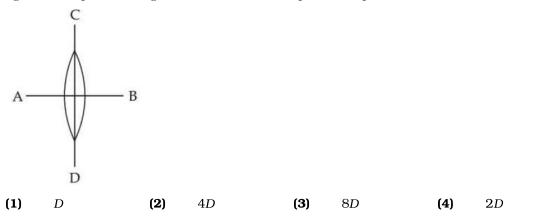

- (1) $\gamma_2 < \gamma_1$ (2) $2\gamma_2 = \gamma_1$ (3) $\gamma_2 > \gamma_1$ (4) $\gamma_2 = \gamma_1$
- 39. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : A simple pendulum is taken to a planet of mass and radius, 4 times and 2 times, respectively, than the Earth. The time period of the pendulum remains same on earth and the planet.

Reason (R) : The mass of the pendulum remains unchanged at Earth and the other planet.

In the light of the above statements, choose the correct answer from the options given below :

- (1) (A) is true but (R) is false
- (2) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- (3) (A) is false but (R) is true
- (4) Both (A) and (R) are true and (R) is the correct explanation of (A)



A tube of length *L* is shown in the figure. The radius of cross section at the point (1) is 2 *cm* and at the point (2) is 1 *cm*, respectively. If the velocity of water entering at point (1) is 2 *m*/ *s*, then velocity of water leaving the point (2) will be:

41. A transparent film of refractive index, 2.0 is coated on a glass slab of refractive index, 1.45. What is the minimum thickness of transparent film to be coated for the maximum transmission of Green light of wavelength 550 nm. [Assume that the light is incident nearly perpendicular to the glass surface.]

(1) 94.8 nm (2) 275 nm (3) 137.5 nm (4) 68.7 nm

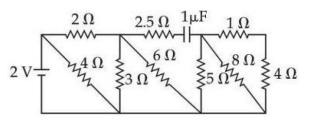
42. A symmetric thin biconvex lens is cut into four equal parts by two planes AB and CD as shown in figure. If the power of original lens is 4D then the power of a part of the divided lens is:

43. A series *LCR* circuit is connected to an alternating source of emf *E*. The current amplitude at resonant frequency is I_0 . If the value of resistance *R* becomes twice of its initial value then amplitude of current at resonance will be:

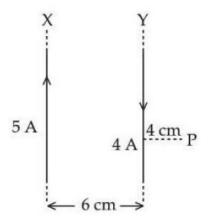
(1)
$$\frac{I_0}{\sqrt{2}}$$
 (2) $\frac{I_0}{2}$ (3) $2I_0$ (4) I_0

44. A ball of mass 100 g is projected with velocity 20 m/s at 60° with horizontal. The decrease in kinetic energy of the ball during the motion from point of projection to highest point is:

(1)
$$5 J$$
 (2) zero (3) $20 J$ (4) $15 J$


45. A small rigid spherical ball of mass M is dropped in a long vertical tube containing glycerine. The velocity of the ball becomes constant after some time. If the density of glycerine is half of the density of the ball, then the viscous force acting on the ball will be (consider *g* as acceleration due to gravity)

(1) Mg (2)
$$\frac{3}{2}$$
 Mg (3) $\frac{Mg}{2}$ (4) 2 Mg


SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

- **46.** A parallel plate capacitor of area $A = 16 \text{ cm}^2$ and separation between the plates 10 cm, is charged by a DC current Consider a hypothetical plane surface of area $A_0 = 3.2 \text{ cm}^2$ inside the capacitor and parallel to the plates. At an instant, the current through the circuit is 6A. At the same instant the displacement current through A_0 is _____ mA.
- **47.** The net current flowing in the given circuit is ______ *A*.

48. Two long parallel wires *X* and *Y*, separated by a distance of 6 *cm*, carry currents of 5*A* and 4*A*, respectively, in opposite directions as shown in the figure. Magnitude of the resultant magnetic field at point *P* at a distance of 4 *cm* from wire *Y* is $x \times 10^{-5}T$. The value of *x* is ______. Take permeability of free space as $\mu_0 = 4\pi \times 10^{-7}$ SI units.

- **49.** A tube of length 1m is filled completely with an ideal liquid of mass 2M, and closed at both ends. The tube is rotated uniformly in horizontal plane about one of its ends. If the force exerted by the liquid at the other end is *F* then angular velocity of the tube is $\sqrt{\frac{F}{\alpha M}}$ in SI unit. The value of α is _____.
- **50.** A proton is moving undeflected in a region of crossed electric and magnetic fields at a constant speed of $2 \times 10^5 \text{ ms}^{-1}$. When the electric field is switched off, the proton moves along a circular path of radius 2 *cm*. The magnitude of electric field is $x \times 10^4 \text{ N} / \text{C}$. The value of x is ______. Take the mass of the proton =1.6 × 10⁻²⁷ kg.

SUBJECT III: CHEMISTRY

MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

51. Given below are two statements :

Statement (I) : An element in the extreme left of the periodic table forms acidic oxides.

Statement (II) : Acid Is formed during the reaction between water and oxide of a reactive element present in the extreme right of the periodic table,

In the light of the above statements, choose the correct answer from the options given below :

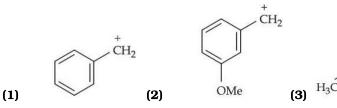
- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are true
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are false
- **52.** Match the Compounds (List -I) with the appropriate Catalyst/ Reagents (List II) for their reduction into corresponding amines.

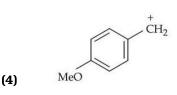
	List – I (Compounds)		List – II (Catalyst/Reagents)
(A)		(I)	NaOH(aqueous)
(B)	NO ₂	(II)	H ₂ / Ni
(C)	$R-C \equiv N$	(III)	$\mathrm{LiAlH}_4,\mathrm{H}_2\mathrm{O}$
(D)	O N-R	(IV)	Sn, HCl

Choose the correct answer from the options given below :

(1)	(A)-(II), (B)-(I), (C)-(III), (D)-(IV)	(2)	(A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(3)	(A)-(II), (B)-(IV), (C)-(III), (D)-(I)	(4)	(A)-(III), (B)-(II), (C)-(IV), (D)-(I)

53. Given below are two statements :


Statement (I) : Corrosion is an electrochemical phenomenon in which pure metal acts as an anode and impure metal as a cathode.


Statement (II) : The rate of corrosion is more in alkaline medium than in acidic medium.

In the light of the above statements, choose the correct answer from the options given below :

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are true
- (3) Statement I is false but Statement II is true
- (4) Both Statement 1 and Statement II are false

54. The most stable carbocation from the following is :

CH2

55. Given below are two statements :

Statement (I) : A spectral line will be observed tor a $2p_{\rm X} \rightarrow 2p_{\rm V}$ transition.

Statement (II) : $2p_x$ and $2p_y$ (are degenerate orbitals.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement 1 and Statement II are false
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Statement 1 is false but Statement II is true

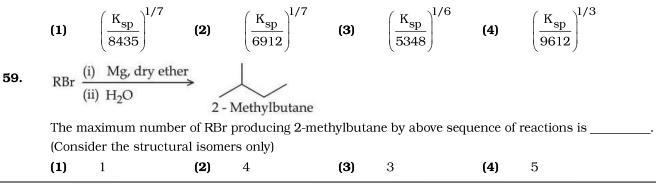
56. Arrange the following compounds in increasing order of their dipole moment :

HBr, H_2S , NF_3 and $CHCl_3$

(1)	$\mathrm{CHCl}_3 < \mathrm{NF}_3 < \mathrm{HBr} < \mathrm{H}_2\mathrm{S}$	(2)	$\mathrm{HBr} < \mathrm{H_2S} < \mathrm{NF_3} < \mathrm{CHCl_3}$
-----	---	-----	--

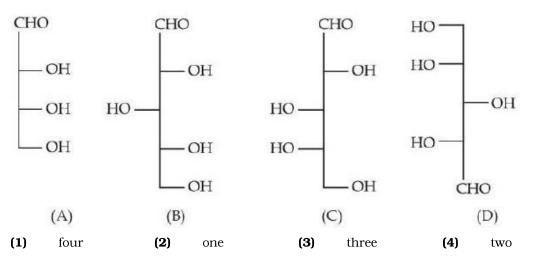
 $\textbf{(3)} \qquad \mathrm{NF}_3 < \mathrm{HBr} < \mathrm{H}_2 \mathrm{S} < \mathrm{CHCl}_3 \qquad \qquad \textbf{(4)} \qquad \mathrm{H}_2 \mathrm{S} < \mathrm{HBr} < \mathrm{NF}_3 < \mathrm{CHCl}_3$

57. Match List - 1 with List - 11.


	List – I (Partial Derivatives)		List – II (Thermodynamic Quantity)
(A)	$\left(\frac{\partial \mathbf{G}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$	(I)	Ср
(B)	$\left(\frac{\partial H}{\partial T}\right)_{P}$	(II)	S
(C)	$\left(\frac{\partial G}{\partial P}\right)_{T}$	(III)	Cv
(D)	$\left(\frac{\partial U}{\partial T}\right)_{V}$	(IV)	V

Choose the correct answer from the options given below :

(A)-(II), (B)-(I), (C)-(IV), (D)-(III) (2) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)

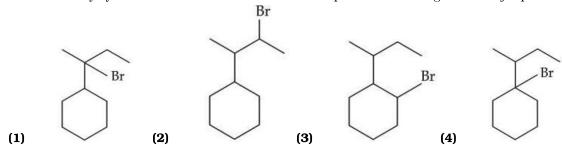

(3) (A)-(I), (B)-(II), (C)-(IV), (D)-(III) (4) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)

58. The molar solubility(s) of zirconium phosphate with molecular formula $(Zr^{4+})_3(PO_4^{3-})_4$ is given by relation :

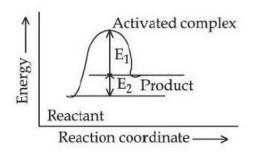
(1)

- 60. The maximum covalency of a non-metallic group 15 element 'E' with weakest E E bond is : (1) 4 (2) 3 (3) 6 (4) 5
- **61.** Identify the number of structure/s from the following which can be correlated to D-glyceraldehyde.

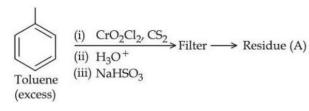
62. Given below are two statements :


Statement (1) : Nitrogen, sulphur, halogen and phosphorus present in an organic compound are detected by Lassaigne's Test.

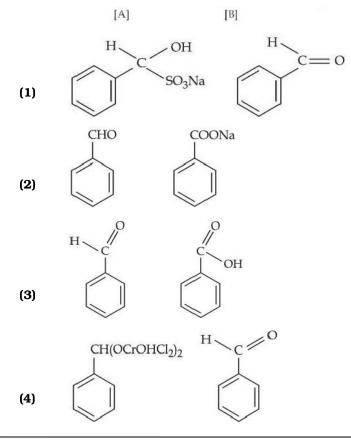
Statement (II) : The elements present in the compound are converted from covalent form into ionic form by fusing the compound with Magnesium in Lassaigne's test.


In the light of the above statements, choose the correct answer from the options given below :

- (1) Both Statement I and Statement II are false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Statement I is true but Statement II is false
- **63.** Identify the homoleptic complex(es) that is/are low spin.
 - (A) $[Fe(CN)_5 NO]^{2-}$ (B) $[CoF_6]^{3-}$ (C) $[Fe(CN)_6]^{4-}$ (D) $[Co(NH_3)_6]^{3+}$ (D) $[Cr(H_2O)_6]^{2+}$
 - (1) (C) and (D) only (2) (A) and (C) only (3) (B) and (E) only (4) (C) only
- **64.** The alkane from below having two secondary hydrogens is :
 - (1)
 2,2,4,4-Tetramethylhexane
 (2)
 4-Ethyl-3,4-dimethyloctane


 (3)
 2,2,4,5-Tetramethylheptane
 (4)
 2,2,3,3-Tetramethylpentane
- **65.** Density of 3 M NaCl solution is 1.25 g/mL. The molality of the solution is :
 - (1) 3 m (2) 2 m (3) 1.79 m (4) 2.79 m
- **66.** When sec-butylcyclohexane reacts with bromine in the presence of sunlight, the major product is :

- **67.** The species which does not undergo disproportionation reaction is :
 - (1) CIO_4^- (2) CIO^- (3) CIO_3^- (4) CIO_2^-
- **68.** Consider the given figure and choose the correct option :



- (1) Activation energy of forward reaction is $E_1 + E_2$ and product is less stable than reactant.
- (2) Activation energy of both forward and backward reaction is $E_1 + E_2$ and reactant is more stable than product.
- (3) Activation energy of forward reaction is $E_1 + E_2$ and product is more stable than reactant.
- (4) Activation energy of backward reaction is E_1 and product is more stable than reactant.

Residue (A) + HCl(dil) \rightarrow Compound (B)

Structure of residue (A) and compound (B) formed respectively is :

69.

70. The correct order of the following complexes in term of their crystal field stabilization energies is :

(1)
$$[Co(NH_3)_4]^{2+} < [Co(NH_3)_6]^{2+} < [Co(NH_3)_6]^{3+} < [Co(en)_3]^{3+}$$

(2)
$$[Co(NH_3)_4]^{2+} < [Co(NH_3)_6]^{2+} < [Co(en)_3]^{3+} < [Co(NH_3)_6]^{3+}$$

(3)
$$[Co(NH_3)_6]^{2+} < [Co(NH_3)_6]^{3+} < [Co(NH_3)_4]^{2+} < [Co(en)_3]^{3+}$$

(4) $[Co(en)_3]^{3+} < [Co(NH_3)_6]^{3+} < [Co(NH_3)_6]^{2+} < [Co(NH_3)_4]^{2+}$

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

- **71.** Niobium (Nb) and ruthenium (Ru) have "x" and "y" number of electrons in their respective 4d orbitals. The value of x + y is ______.
- **72.** Consider the following cases of standard enthalpy of reaction $\left(\Delta H_{r}^{\circ}$ in kJ mol⁻¹ $\right)$

$$C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l) \Delta H_1^\circ = -1550$$

 $C(graphite) + O_2(g) \rightarrow CO_2(g) \ \Delta H_2^{\circ} = -393.5$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l) \Delta H_3^{\circ} = -286$$

The magnitude of $\Delta H_{f C_2 H_6(g)}^0$ _____ kJ mol⁻¹ (Nearest integer).

- **73.** 20 mL of 2 M NaOH solution is added to 400 mL of 0.5 M NaOH solution. The final concentration of the solution is $___ \times 10^{-2}$ M. (Nearest integer)
- **74.** The complex of Ni^{2+} ion and dimethyl glyoxime contains _____ number of Hydrogen (H) atoms.
- **75.** The compound with molecular formula C_6H_6 , which gives only one monobromo derivative and takes up four moles of hydrogen per mole for complete hydrogenation has ______ π electrons.