IIT JEE | MEDICAL | FOUNDATION

JEE Main - 2023

30 ${ }^{\text {th }}$ JAN 2023 (Morning Shift)

General Instructions

1. The test is of $\mathbf{3}$ hours duration and the maximum marks is $\mathbf{3 0 0}$.
2. The question paper consists of $\mathbf{3}$ Parts (Part I: Physics, Part II: Chemistry, Part III: Mathematics). Each Part has two sections (Section 1 \& Section 2).
3. Section 1 contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.
4. Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. You will NOT be allowed to attempt the sixth question. If you wish to attempt any other question apart from the five already attempted, then you will have to delete any one response from the five previously answered and then proceed to answer the new one.
The answer to each question should be rounded off to the nearest integer.
5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.

Marking Scheme

1. Section - 1: +4 for correct answer, -1 (negative marking) for incorrect answer, 0 for all other cases.
2. Section - 2: +4 for correct answer, -1 (negative marking) for incorrect answer, 0 for all other cases.

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

1. A massless square loop, of wire of resistance 10Ω, surrounding a mass of $1 g$, hangs vertically with one of its sides in a uniform magnetic field of $10^{3} G$, directed outwards in the shaded region. A $d c$ voltage V is applied to the loop. For what value of V, the magnetic force will exactly balance the weight of the supporting mass of 1 g ? (If sides of the loop $=10 \mathrm{~cm}, g=10 \mathrm{~ms}^{-2}$)

(1) 10 V
(2) 100 V
(3) $\frac{1}{10} V$
(4) 1 V
2. The figure represents the momentum time $(p-t)$ curve for a particle moving along an axis under the influence of the force. Identify the regions on the graph where the magnitude of the force is maximum and minimum respectively? (If $\left(t_{3}-t_{2}\right)<t_{1}$)

(1) c and a
(2)
b and c
(3) c and b
(4) a and b
3. Electric field in a certain region is given by $\vec{E}=\left(\frac{A}{x^{2}} \hat{i}+\frac{B}{y^{3}} \hat{j}\right)$. The SI unit of A and B are:
(1) $\quad \mathrm{Nm}^{3} \mathrm{C}^{-1} ; \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(2) $\mathrm{Nm}^{3} \mathrm{C} ; \mathrm{Nm}^{2} \mathrm{C}$
(3) $\quad \mathrm{Nm}^{2} \mathrm{C} ; \mathrm{Nm}^{3} \mathrm{C}$
(4) $\quad \mathrm{Nm}^{2} \mathrm{C}^{-1} ; \mathrm{Nm}^{3} \mathrm{C}^{-1}$
4. In a series LR circuit with $X_{L}=R$, power factor is P_{1}. If a capacitance C with $X_{C}=X_{L}$ is added to the circuit the power factor becomes P_{2}. The ratio of P_{1} to P_{2} will be:
(1) $1: \sqrt{2}$
(2) $1: 2$
(3) $1: 1$
(4) $1: 3$
5. Speed of an electron in Bohr's $7^{\text {th }}$ orbit for hydrogen atom is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The corresponding speed of the electron in $3^{\text {rd }}$ orbit, in m / s is:
(1)
$\left(1.8 \times 10^{6}\right)$
(2) $\left(8.4 \times 10^{6}\right)$
(3) $\left(7.5 \times 10^{6}\right)$
(4) $\left(3.6 \times 10^{6}\right)$
6. Choose the correct relationship between Poisson ratio (σ), bulk modulus (K) and modulus of rigidity (η) of a given solid object.
(1) $\sigma=\frac{3 K-2 \eta}{6 K+2 \eta}$
(2) $\sigma=\frac{6 K-2 \eta}{3 K-2 \eta}$
(3) $\sigma=\frac{3 K+2 \eta}{6 K+2 \eta}$
(4) $\sigma=\frac{6 K+2 \eta}{3 K-2 \eta}$
7. A person has been using spectacles of power -1.0 dioptre for distant vision and a separate reading glass of power 2.0 dioptres. What is the least distance of distinct vision for this person?
(1) 40 cm
(2) 10 cm
(3) 30 cm
(4) 50 cm
8. Two isolated metallic solid spheres of radii R and $2 R$ are charged such that both have same charge density σ. The spheres are then connected by a thin conducting wire. If the new charge density if the bigger sphere is ' σ '. The ratio $\frac{\sigma^{\prime}}{\sigma}$ is:
(1) $\frac{5}{6}$
(2) $\frac{9}{4}$
(3) $\frac{5}{3}$
(4) $\frac{4}{3}$
9. A sinusoidal carrier voltage is amplitude modulated. The resultant amplitude modulated wave has maximum and minimum amplitude of 120 V and 80 V respectively. The amplitude of each sideband is:
(1) 5 V
(2) 10 V
(3) 20 V
(4) 15 V
10. Match Column-I with Column-II.

Column-I		Column-II	
A.		I.	
B.		II.	
C.		III.	
D.		IV.	

Choose the correct answer from the options given below:
(1) A-II, B-IV, C-III, D-I
(2) A-I, B-II, C-III, D-IV
(3) A-II, B-III, C-IV, D-I
(4) A-I, B-III, C-IV, D-II
11. A small object rest, absorbs a light pulse of power 20 mW and duration 30 ns . Assuming speed of light as $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the momentum of the object becomes equal to:
(1) $2 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$0.5 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(3) $1 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(4) $3 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
12. If the gravitation field in the space is given as $\left(-\frac{K}{r^{2}}\right)$. Taking the reference point to be at $r=2 \mathrm{~cm}$ with gravitational potential $V=10 \mathrm{~J} / \mathrm{kg}$. Find the gravitational potential at $r=3 \mathrm{~cm}$ in SI unit.
(Given, that $K=6 \mathrm{Jm} / \mathrm{kg}$)
(1) 10
(2) 11
(3) 9
(4) 12
13. The output waveform of the given logical circuit for the following inputs A and B as shown below, is:

(1)

(2)

14. The height of liquid column raised in a capillary two of certain radius when dipped in liquid A vertically is, 5 cm . If the tube is dipped in a similar manner in another liquid B of surface tension and density double the values of liquid A, the height of liquid column raised in liquid B would be \qquad m.
(1) 0.20
(2) 0.5
(3) 0.10
(4) 0.05
15. The charge flowing in a conductor changes with time as $Q(t)=\alpha t-\beta t^{2}+\gamma t^{3}$. Where α, β and γ are constants. Minimum value of current is:
(1) $\alpha-\frac{\beta^{2}}{3 \gamma}$
(2) $\beta-\frac{\alpha^{2}}{3 \gamma}$
(3) $\alpha-\frac{\gamma^{2}}{3 \beta}$
(4) $\alpha-\frac{3 \beta^{2}}{\gamma}$
16. The pressure (P) and temperature (T) relationship of an ideal gas obeys the equation $P T^{2}=$ constant. The volume expansion coefficient of the gas will be:
(1) $3 T^{2}$
(2) $\frac{3}{T}$
(3) $\frac{3}{T^{3}}$
(4) $\frac{3}{T^{2}}$
17. The magnetic moments associated with two closely wound circular coils A and B of radius $r_{A}=10 \mathrm{~cm}$ and $r_{B}=20 \mathrm{~cm}$ respectively are equal if:
(Where N_{A}, I_{A} and N_{B}, I_{B} are number of turn and current of A and B respectively)
(1) $2 N_{A} I_{A}=N_{B} I_{B}$
(2) $4 N_{A} I_{A}=N_{B} I_{B}$
(3) $N_{A} I_{A}=4 N_{B} I_{B}$
(4) $N_{A}=2 N_{B}$
18. A ball of mass 200 g rests on a vertical post of height 20 m . A bullet of mass 10 g . travelling in horizontal direction, hits the centre of the ball. After collision both travels independently. The ball hits the ground at a distance 30 m and the bullet at a distance of 120 m from the foot of the post. The value of initial velocity of the bullet will be (if $g=10 \mathrm{~m} / \mathrm{s}^{2}$).
(1) $360 \mathrm{~m} / \mathrm{s}$
(2) $400 \mathrm{~m} / \mathrm{s}$
(3) $120 \mathrm{~m} / \mathrm{s}$
(4) $60 \mathrm{~m} / \mathrm{s}$
19. As per the given figure, a small ball P slides sown the quadrant of a circle and hits the other ball Q of equal mass which is initially at rest. Neglecting the effect of friction and assume the collision to be elastic, the velocity of ball Q after collision will be: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(1) 0
(2) $2 \mathrm{~m} / \mathrm{s}$
(3) $4 \mathrm{~m} / \mathrm{s}$
(4) $0.25 \mathrm{~m} / \mathrm{s}$
20. Heat is given to an ideal gas in an isothermal process.
A. Internal energy of the gas will decrease.
B. Internal energy of the gas will increase.
C. Internal energy of the gas will not change.
D. The gas will do positive work.
D. The gas will do negative work.

Choose the correct answer from the options given below:
(1) $\quad C$ and E only
(2) $\quad A$ and E only
(3) $\quad B$ and D only
(4) $\quad C$ and D only

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.
21. In the following circuit, the magnitude of current I_{1}, is \qquad A.

22. In a screw gauge, there are 100 divisions on the circular scale and the main scale moves by 0.5 mm on a complete rotation of the circular scale. The zero of circular scale lies 6 divisions below the line of graduation when two studs are brought in contact with each other. When a wire is placed between the studs, 4 linear scale divisions are clearly visible while $46^{\text {th }}$ division the circular scale coincide with the reference line. The diameter of the wire is \qquad $\times 10^{-2} \mathrm{~mm}$.
23. In an experiment for estimating the value of focal length of converging mirror, image of an object placed at 40 cm from the pole of the mirror is formed at distance 120 cm from the pole of the mirror. These distances are measured with a modified scale in which there are 20 small divisions in 1 cm . The value of error in measurement of focal length of the mirror is $\frac{1}{K} \mathrm{~cm}$. The value of K is \qquad $-$
24. A horse rider covers half the distance with $5 \mathrm{~m} / \mathrm{s}$ speed. The remaining part of the distance was travelled with speed $10 \mathrm{~m} / \mathrm{s}$ for half the time and with $15 \mathrm{~m} / \mathrm{s}$ for other half of the time. The mean speed of the rider averaged over the whole time of motion is $\frac{x}{7} m / s$. The value of x is \qquad .
25. A point source of light is placed at the centre of curvature of a hemispherical surface. The source emits a power of $24 W$. The radius of curvature of hemisphere is 10 cm and the inner surface is completely reflecting. The force on the hemisphere due to the light falling on it is \qquad $\times 10^{-8} N$.
26. A thin uniform rod of length $2 m$, cross sectional area ' A ' and density ' d ' is rotated about an axis passing through the centre and perpendicular to its length with angular velocity ω. If value of ω in terms of its rotational kinetic energy E is $\sqrt{\frac{\alpha E}{A d}}$ then value of α is \qquad -.

As per the given figure, if $\frac{d I}{d t}=-1 A / s$ then the value of $V_{A B}$ at this instant will be \qquad V.
28. In Young's souble slit experiment, two slits S_{1} and S_{2} are ' d ' distance apart and the separation from slits screen is D. (as shown in figure). Now if two transparent slobs of equal thickness 0.1 mm but index 1.51 and 1.55 are introduction in the path of beam $(\lambda=400 \AA)$ from S_{1} and S_{2} respectively. The central bright fringe spot will shift by \qquad number of fringes.

29. The general displacement of a simple harmonic oscillator is $x=A \sin \omega t$. Let T be its time period. The slope of its potential energy (U) - time (t) curve will be maximum when $t=\frac{T}{\beta}$. The value of β is \qquad .
30. A capacitor of capacitance $90 \mu F$ charged by a 100 V battery. The capacitor is disconnected from the battery and connected to another plate uncharged identical capacitor such that one plate of uncharged capacitor connected to positive plate and another plate of uncharged connected to negative plate of the charged capacitor. The loss of energy in this process is measured as $x \times 10^{-2} J$. The value of x is \qquad .

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

1. In the extraction of copper, its sulphide ore is heated in a reverberatory furance after mixing with silica to:
(1) decrease the temperature needed for roasting of $\mathrm{Cu}_{2} \mathrm{~S}$
(2) remove calcium as CaSiO_{3}
(3) separate CuO as CuSiO_{3}
(4) remove FeO as FeSiO_{3}
2. Which of the following compounds would give the following set of qualitative analysis?
(i) Fehling's Test : Positive
(ii) Na Fusion extract upon treatment with sodium nitroprusside gives a blood red colour but not Prussian blue.
(1)

(2)

(3)

(4)

3. Caprolactam when heated at high temperature in pressure of water, gives:
(1) Nylon 6
(2) Teflon
(3) Nylon 6, 6
(4) Dacron
4. Amongst the following compounds, which one is an antacid?
(1) Brompheniramine
(2) Terfenadine
(3) Ranitidine
(4) Meprobamate
5. Given below are two statements : one is labelled as Assertion (A) and the other labelled as Reason (R).

Assertion (A) : Ketoses gives Seliwanoff's test faster than Alsoses.
Reason (R): Ketoses undergoes β-elimination followed by formation of furfural.
In the light of the above statements, choose the correct from the options given below:
(1) (A) is true but (\mathbf{R}) is false
(2) Both (A) and (R) are true (R) is the explanation of (A)
(3) (A) is false but (\mathbf{R}) is true
(4) Both (A) and (R) are true but (\mathbf{R}) is not the explanation of (A)
6. The alkaline earth metal sulphate(s) which are readily soluble in water is/are:
A. $\quad \mathrm{BeSO}_{4}$
B. MgSO_{4}
C. CaSO_{4}
D. SrSO_{4}
E. $\quad \mathrm{BaSO}_{4}$

Choose the correct answer from the options given below:
(1) B and C
(2) B only
(3) A only
(4) A and B
7. Match List-I with List-II.

List-I (Atomic number)		List-II (Block of periodic table)	
A.	37	I.	p-Block
B.	78	II.	d-Block
C.	52	III.	f-Bock
D.	65	IV.	s-Block

Choose the correct answer from the options given below:
(1) A-IV, B-III, C-II, D-I
(2) A-IV, B-II, C-I, D-III
(3) A-II, B-IV, C-I, D-III
(4) A-I, B-III, C-IV, D-II
8. The major products ' A ' and ' B ', respectively, are:

(1)

(2)

(3)

(4)

9. Which of the following is correct order of ligand field strength?
(1) $\mathrm{S}^{2-}<\mathrm{NH}_{3}<$ en $<\mathrm{CO}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(2) $\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}<\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(3) $\mathrm{CO}<\mathrm{en}<\mathrm{NH}_{3}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}^{2-}$
(4) $\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}$
10. Match List-I with List-II.

List-I (molecules/ions)		List-II (No. of lone pairs of e central atom)	
A.	IF_{7}	I.	Three
B.	ICl_{4}^{-}	II.	One
C.	XeF_{6}	III.	Two
D.	XeF_{2}	IV.	Zero

Choose the correct answer from the options given below:
(1) A-IV, B-III, C-II, D-I
(2) A-II, B-III, C-IV, D-I
(3) A-IV, B-I, C-II, D-III
(4) A-II, B-I, C-IV, D-III
11. Formation of photochemical smog involves the following reaction in which A, B and C are respectively.
(i) $\quad \mathrm{NO}_{2} \xrightarrow{\mathrm{~h} \nu} \mathrm{~A}+\mathrm{B}$
(ii) $\quad \mathrm{B}+\mathrm{O}_{2} \longrightarrow \mathrm{C}$
(iii) $\mathrm{A}+\mathrm{C} \longrightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$

Choose the correct answer from the options given below:
(1)
$\mathrm{O}, \mathrm{N}_{2} \mathrm{O} \& \mathrm{NO}$
(2) $\mathrm{N}, \mathrm{O}_{2}$ and O_{3}
(3) $\mathrm{NO}, \mathrm{O} \& \mathrm{O}_{3}$
(4) $\mathrm{O}, \mathrm{NO} \& \mathrm{NO}_{3}^{-}$
12. Given below are two statements : one is labelled as Assertion (A) and the other labelled as Reason (R). Assertion (A): In expensive scientific instruments, silica gel is kept in watch-galsses or in semipermeable membrane begs.
Reason (R): Silica gel adsorbs moisture from air via adsorption, thus protects the instrument from water corrosion (rusting) and / or prevents malfunctioning
In the light of the above statements, choose the correct from the options given below:
(1) Both (\mathbf{A}) and (\mathbf{R}) are true (\mathbf{R}) is the explanation of (A)
(2) (A) is false but (\mathbf{R}) is true
(3) Both (\mathbf{A}) and (\mathbf{R}) are true but (\mathbf{R}) is not the explanation of (A)
(4) (A) is true but (\mathbf{R}) is false
13. Benzyl isocyanide can be obtained by:
A.

B.

C.

D.

Choose the correct answer from the options given below:
(1) A and B
(2) A and D
(3) Only C
(4) B and C
14. Lithium aluminium hydride cab be prepared from the reaction of:
(1) LiH and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
(2) LiH and $\mathrm{Al}(\mathrm{OH})_{3}$
(3) LiCl and $\mathrm{Al}_{2} \mathrm{H}_{6}$
(4) $\mathrm{LiCl}, \mathrm{Al}$ and H_{2}
15. What is the correct order of acidity of the protons marked $\mathrm{A}-\mathrm{D}$ in the given compounds?

(1)
$\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{B}}<\mathrm{H}_{\mathrm{A}}$
$\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{B}}$
(3)
$\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{A}}$
(4) $\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{B}}$
16. During the qualitative analysis of SO_{3}^{2-} using dilute $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ gas is evolved which turns $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution (acidified with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$).
(1) red
(2) green
(3) blue
(4) black
17. For OF_{2} molecule consider the following:
A. Number of lone pairs on oxygen is 2 .
B. FOF angle is less than 104.5°.
C. Oxidation state of O is -2 .
D. Molecule is bent ' V ' shaped.
E. Molecular geometry is linear.

Correct option are:
(1) C, D, E only
(2)
A, B, C only
(3)
B, E, A only
(4) A, C, D only
18. In the wet tests for identification of various cations by precipitate, which transition element cation doesn't belong to group IV in qualitative inorganic analysis?
(1)
Co^{2+}
(2) Zn^{2+}
(3) Ni^{2+}
(4) Fe^{3+}
19. To inhibit the growth of tumours, identify the compounds used from the following:
A. EDTA
B. Coordination compounds of Pt
C. D-Penicillamine
D. Cis-Platin

Choose the correct answer from the options given below:
(1) C and D only
(2) A and C only
(3) B and D only
(4) A and B only
20. Match List-I with List-II.
List-I

Choose the correct answer from the options given below:
(1) A-II, B-I, C-III, D-IV
(2) A-IV, B-II, C-III, D-I
(3) A-III, B-II, C-IV, D-I
(4) A-II, B-I, C-IV, D-III

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.
21. 600 mL of 0.01 M HCl is mixing with 400 mL of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The pH of the mixture is \qquad $\times 10^{-2}$. (Nearest integer)
[Given : $\log 2=0.30, \log 3=0.48, \log 5=0.69, \log 7=0.84, \log 11=1.04$]
22. The number of electrons involved in the reduction permanganate to manganese dioxide in acidic medium is \qquad _.
23. If compound A reacts with B following first order kinetics with rate constant $2.011 \times 10^{-3} \mathrm{~s}^{-1}$. The time taken by A (in seconds) to reduce from 7 g to 2 g will be \qquad . (Nearest integer) $[\log 5=0.698, \log 7=0.845, \log 2=0.301]$
24. When 2 litre of ideal gas expands isothermally into vacuum to a total volume of 6 litre, the change in internal energy is \qquad J. (Nearest integer)
25. A 300 mL bottle of soft drink has $0.2 \mathrm{M} \mathrm{CO}_{2}$ dissolved in it. Assuming CO_{2} behaves as an ideal gas, the volume of the dissolved CO_{2} at STP is \qquad mL. (Nearest integer)
[Given : At STP, molar volume of an ideal gas is $22.7 \mathrm{~L} \mathrm{~mol}^{-1}$]
26. A solution containing 2 g of a non-volatile solute in 20 g of water boils at 373.52 K . The molecular mass of the solute is \qquad $\mathrm{g} \mathrm{mol}^{-1}$. (Neatest integer)
[Given, water boils at $373 \mathrm{~K}, \mathrm{~K}_{\mathrm{b}}$ for water $=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
27. Some amount of dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ is added to 671.141 mL of chloroform $\left(\mathrm{CHCl}_{3}\right)$ to prepare $2.6 \times 10^{-3} \mathrm{M}$ solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{DCM})$. The concentration of DCM is \qquad ppm (by mass). [Given : Atomic mass : $\mathrm{C}=12, \mathrm{H}=1, \mathrm{Cl}=35.5$ density of $\mathrm{CHCl}_{3}=1.49 \mathrm{~g} \mathrm{~cm}^{-3}$]
28. The energy of mole of photons of radiation of frequency $2 \times 10^{12} \mathrm{~Hz}_{\text {in }} \mathrm{J} \mathrm{mol}^{-1}$ is \qquad .
(Nearest integer) [Given : $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}, \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$]
29. A trisubstituted compound ' A ', $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ gives neutral FeCl_{3} test positive. Treatment of compound ' A ' with NaOH and $\mathrm{CH}_{3} \mathrm{Br}$ gives $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$, with hydroiodic acid gives methyl iodide and with hot conc. NaOH gives a compound $\mathrm{B}, \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$. Compound ' A ' also decolorizes alkaline KMnO_{4}. The number of π bond/s present in the compound ' A ' is \qquad .
30. Consider the cell $\mathrm{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{H}^{+}(\mathrm{aq} .1 \mathrm{M}) \| \mathrm{Fe}^{3+}(\mathrm{aq}), \mathrm{Fe}^{2+}(\mathrm{aq}) \mid \operatorname{Pt}(\mathrm{s})$.

When the potential of the cell is 0.712 V at 298 K , the ratio $\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]$ is \qquad .
(Nearest integer) [Given : $\left.\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}, \mathrm{E}^{\theta} \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} \mid \mathrm{Pt}=0.771 ; \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}\right]$

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

1. If $\tan 15^{\circ}+\frac{1}{\tan 75^{\circ}}+\frac{1}{\tan 105^{\circ}}+\tan 195^{\circ}=2 \mathrm{a}$, Then the value of $\left(\mathrm{a}+\frac{1}{\mathrm{a}}\right)$ is:
(1) $5-\frac{3}{2} \sqrt{3}$
(2) $4-2 \sqrt{3}$
(3) 2
(4) 4
2. If an unbiased die, marked with $-2,-1,0,1,2,3$ on its faces, is thrown five times, then the probability that the product of the outcomes is positive, is:
(1) $\frac{27}{288}$
(2) $\frac{440}{2592}$
(3) $\frac{881}{2592}$
(4) $\frac{521}{2592}$
3. If the solution of the equation $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right)$, is $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$, where α, β are integers, then $\alpha+\beta$ is equal to:
(1) 3
(2) 5
(3) 4
(4) 6
4. Suppose $f: R \rightarrow(0, \infty)$ be a differentiable function such that

$$
5 f(x+y)=f(x) \cdot f(y), \forall x, y \in R . \text { If } f(3)=320, \text { then } \sum_{n=0}^{5} f(n) \text { is equal to: }
$$

(1) 6825
(2) 6525
(3) 6575
(4) 6875
5. If $[t]$ denotes the greatest integer $\leq t$, then the value of $\frac{3(e-1)}{e} \int_{2}^{2} x^{2} e^{[x]+\left[x^{3}\right]} d x$ is:
(1) $e^{8}-e$
(2) $e^{7}-1$
(3) $e^{9}-e$
(4) $e^{8}-1$
6. The number of points on the curve $y=54 x^{5}-135 x^{4}-70 x^{3}+180 x^{2}+210 x$ at which the normal lines are parallel to $x+90 y+2=0$ is:
(1) 2
(2) 3
(3) 4
(4) 0
7. Let $A=\left(\begin{array}{cc}m & n \\ p & q\end{array}\right), d=|A| \neq 0$ and $|A-d(\operatorname{Adj} A)|=0$. Then:
(1)
$(1+d)^{2}=m^{2}+q^{2}$
(2) $\quad(1+d)^{2}=(m+q)^{2}$
(3) $1+d^{2}=m^{2}+q^{2}$
(4) $1+d^{2}=(m+q)^{2}$
8. Let the system of linear equations $x+y+k z=2,2 x+3 y-z=1,3 x+4 y+2 z=k$ have infinitely many solutions.
Then the system
$(k+1) x+(2 k-1) y=7$
$(2 k+1) x+(k+5) y=10$
has:
(1) unique solution satisfying $x-y=1$
(2) no solution
(3) unique solution satisfying $x+y=1$
(4) infinitely many solutions
9. Among the statements:
$(S 1)((p \vee q) \Rightarrow r) \Leftrightarrow(p \Rightarrow r)$
$(S 2)((p \vee q) \Rightarrow r) \Leftrightarrow((p \Rightarrow r) \vee(q \Rightarrow r))$
(1) both (S1) and (S2) are tautologies
(2) only (S2) is a tautology
(3) only (S1) is a tautology
(4) neither (S1) nor (S2) is a tautology
10. Let $y=x+2,4 y=3 x+6$ and $3 y=4 x+1$ be three tangent lines to the circle $(x-h)^{2}+(y-k)^{2}=r^{2}$. Then $h+k$ is equal to:
(1) $5(1+\sqrt{2})$
(2) 5
(3) $5 \sqrt{2}$
(4) 6
11. Let the solution curve $y=y(x)$ of the differential equation
$\frac{d y}{d x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{3 / 2}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{\left(1+x^{6}\right)}}\right\}$ pass through origin. Then $y(1)$ is equal to:
(1) $\exp \left(\frac{\pi-4}{4 \sqrt{2}}\right)$
(2) $\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)$
(3) $\exp \left(\frac{1-\pi}{4 \sqrt{2}}\right)$
(4) $\exp \left(\frac{4+\pi}{4 \sqrt{2}}\right)$
12. Let a unit vector $O P$ make angles α, β, γ with the positive directions of the co-ordinate axes OX, OY, OZ respectively, when $\beta \in\left(0, \frac{\pi}{2}\right)$. If $O P$ is perpendicular to the plane through points $(1,2,3),(2,3$, $4)$ and $(1,5,7)$, then which one of the following is true?
(1)
$\alpha \in\left(\frac{\pi}{2}, \pi\right)$ and $\gamma \in\left(\frac{\pi}{2}, \pi\right)$
(2) $\quad \alpha \in\left(\frac{\pi}{2}, \pi\right)$ and $\gamma \in\left(0, \frac{\pi}{2}\right)$
(3) $\quad \alpha \in\left(0, \frac{\pi}{2}\right)$ and $\gamma \in\left(\frac{\pi}{2}, \pi\right)$
$\alpha \in\left(0, \frac{\pi}{2}\right)$ and $\gamma \in\left(0, \frac{\pi}{2}\right)$
13. If $a_{n}=\frac{-2}{4 n^{2}-16 n+15}$, then $a_{1}+a_{2}+\ldots . .+a_{25}$ is equal to:
(1) $\frac{52}{147}$
(2) $\frac{49}{138}$
(3) $\frac{50}{141}$
(4) $\frac{51}{144}$
14. If $P(h, k)$ be a point on the parabola $x=4 y^{2}$, which is nearest to the point $Q(0,33)$, then the distance of P from the directrix of the parabola $y^{2}=4(x+y)$ is equal to:
(1) 2
(2) 4
(3) 6
(4) 8
15. The line l_{1} passes through the point $(2,6,2)$ and is perpendicular to the plane $2 x+y-2 z=10$. Then the shortest distance between the line l_{1} and the line $\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}$ is:
(1) 9
(2) $\frac{13}{3}$
(3) $\frac{19}{3}$
(4) 7
16. A straight line cuts off the intercepts $O A=a$ and $O B=b$ on the positive directions of x-axis and y-axis respectively. If the perpendicular from origin O to this makes an angle of $\frac{\pi}{6}$ with positive direction of y-axis and the area of $\triangle O A B$ is $\frac{98}{3} \sqrt{3}$, then $a^{2}-b^{2}$ is equal to:
(1) $\frac{392}{3}$
(2) $\frac{196}{3}$
(3) 196
(4) 98
17. If the coefficient of x^{15} in the expansion of $\left(a x^{3}+\frac{1}{b x^{1 / 3}}\right)^{15}$ is equal to the coefficient of x^{-15} in the expansion of $\left(a x^{1 / 3}-\frac{1}{b x^{3}}\right)^{15}$, where a and b are positive real numbers, then for each such ordered pair (a, b).
(1) $a=3 b$
(2) $a=b$
(3) $a b=3$
(4) $a b=1$
18. The coefficient of x^{301} in $(1+x)^{500}+x(1+x)^{499}+x^{2}(1+x)^{498}+\ldots . .+x^{500}$ is:
(1) ${ }^{500} C_{301}$
(2) ${ }^{501} C_{302}$
(3) ${ }^{500} C_{300}$
(4) ${ }^{501} C_{200}$
19. The minimum number of elements that must be added to the relation $R=\{(a, b),(b, c)\}$ on the set $\{a, b, c\}$ so that it becomes symmetric and transitive is:
(1) 7
(2) 3
(3) 4
(4) 5
20. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors and \hat{n} is a unit vector perpendicular to \vec{c} such that $\vec{a}=\alpha \vec{b}-\hat{n},(\alpha \neq 0)$ and $\vec{b} \cdot \vec{c}=12$, then $|\vec{c} \times(\vec{a} \times \vec{b})|$ is equal to:
(1) 15
(2) 9
(3) 6
(4) 12

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be

 attempted. The answer to each question should be rounded off to the nearest integer.21. The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted and a and b are respectively mean and variance of remaining 6 observation, then $a+3 b-5$ is equal to \qquad .
22. If $\lambda_{1}<\lambda_{2}$ are two values of λ such that the angle between the planes $P_{1}: \vec{r}(3 \hat{i}-5 \hat{j}+\hat{k})=7$ and $P_{2}: \vec{r} \cdot(\lambda \hat{i}+\hat{j}-3 \hat{k})=9$ is $\sin ^{-1}\left(\frac{2 \sqrt{6}}{5}\right)$, then the square of the length of perpendicular from the point $\left(38 \lambda_{1}, 10 \lambda_{2}, 2\right)$ to the plane P_{1} is \qquad -.
23. $\lim _{x \rightarrow 0} \frac{48}{x^{4}} \int_{0}^{x} \frac{t^{3}}{t^{6}+1} d t$ is equal to \qquad .
24. Let $z=1+i$ and $z_{1}=\frac{1+i \bar{z}}{\bar{z}(1-z)+\frac{1}{z}}$. Then $\frac{12}{\pi} \arg \left(z_{1}\right)$ is equal to \qquad -.
25. Let $S=\{1,2,3,4,5,6\}$. Then the number of one-one functions $f: S \rightarrow P(S)$, where $P(S)$ denotes the power set of S, such that $f(n) \subset f(m)$ where $n<m$ is \qquad _.
26. Number of 4-digit numbers (the repeation of digits is allowed) which are made using the digits $1,2,3$ and 5 , and are divisible by 15 , is equal to \qquad .
27. Let $\sum_{n=0}^{\infty} \frac{n^{3}((2 n)!)+(2 n-1)(n!)}{(n!)((2 n)!)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\sum_{n=0}^{\infty} \frac{1}{n!}$. Then $a^{2}-b+c$ is equal to \qquad .
28. Let α be the area of the larger region bounded by the curve $y^{2}=8 x$ and the $y=x$ and $x=2$, which lies in the first quadrant. Then the value of 3α is equal to \qquad -.
29. If the equation of the plane passing through the point $(1,1,2)$ and perpendicular to the line $x-3 y+2 z=0=4 x-y+z$ is $A x+B y+C z=1$, then $140(C-B+A)$ is equal to \qquad .
30. Let $f^{1}(x)=\frac{3 x+2}{2 x+3}, x \in R-\left\{\frac{-3}{2}\right\}$.

For $n \geq 2$, define $f^{n}(x)=f^{1}(x)=f^{1} O f^{n-1}(x)$.
If $f^{5}(x)=\frac{a x+b}{b x+a}, \operatorname{gcd}(a, b)=1$, then $a+b$ is equal to \qquad -.

