

JEE Main – 2023

24th JAN 2023 (Morning Shift)

General Instructions

- 1. The test is of **3 hours** duration and the maximum marks is **300**.
- 2. The question paper consists of **3 Parts** (Part I: **Physics**, Part II: **Chemistry**, Part III: **Mathematics**). Each Part has **two** sections (Section 1 & Section 2).
- **3.** Section 1 contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.
- 4. Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. You will NOT be allowed to attempt the sixth question. If you wish to attempt any other question apart from the five already attempted, then you will have to delete any one response from the five previously answered and then proceed to answer the new one.

The answer to each question should be **rounded off to the nearest integer**.

5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.

Marking Scheme

- **1. Section 1:** +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.
- 2. Section 2: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.

SUBJECT I: PHYSICS

MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

1. If two charges $q_1 \& q_2$ are separated with distance 'd' and placed in a medium of dielectric constant K. What will be the equivalent distance between charges in air for the same electrostatic force?

(1)
$$k\sqrt{d}$$
 (2) $2d\sqrt{k}$ (3) $1.5d\sqrt{k}$ (4) $d\sqrt{k}$

2. 1 g of a liquid is converted to vaour at 3×10^5 Pa pressure. If 10% of the heat supplied is used for increasing the volume by 1600 cm³ during this phase change, then the increase in internal energy in the process will be :

(1) 432000 J (2) $4.32 \times 10^8 J$ (3) 4800 J (4) 4320 J

3. Given below are two statements :

Statement I : An elevator can go up or down with uniform speed when its weight is balanced with the tension of its cable.

Statement II : Force exerted by the floor of an elevator on the foot of a person standing on it is more than his/her weight when the elevator goes does with increasing speed.

In the light of the above statement, choose the correct answer form the options given below:

- (1) Statement I is false but Statement II is true
- (2) Both Statement I and Statement II are false
- (3) Statement I is true but Statement II is false
- (4) Both Statement I and Statement II are true
- 4. Match Column I with Column II

Column I			Column II		
I.	Planck's constant (h)	Р.	$[M^1 L^2 T^{-2}]$		
II.	Stopping potential (Vs)	Q.	$[M^1 L^1 T^{-1}]$		
III.	Work function (ϕ)	R.	$[M^1 L^2 T^{-1}]$		
IV.	Momentum (p)	S.	$[M^1 L^2 T^{-3} A^{-1}]$		

Choose the correct answer form the options given below :

(1)
$$I - P$$
; $II - R$; $III - S$; $IV - Q$

(3) I - R; II - P; III - Q; IV - S

(2) I-R; II-S; III-P; IV-Q(4) I-Q; II-S; III-R; IV-P

5. A conducting circular loop of radius $\frac{10}{\sqrt{\pi}}$ cm is placed perpendicular to a uniform magnetic field of 0.5 T. the magnetic field is decreased to zero in 0.5 s at a steady rate. The induced emf in the circular loop

at 0.05 s is : (1) emf = 1 mV (2) emf = 5 mV

(3) emf = 10 mV (4) emf = 100 mV

6. Consider the following radioactive decay process

 $\overset{218}{\underset{84}{\sim}}A \xrightarrow{\alpha} A_1 \xrightarrow{\beta^-} A_2 \xrightarrow{\gamma} A_3 \xrightarrow{\alpha} A_4 \xrightarrow{\beta^+} A_5 \xrightarrow{\gamma} A_6$

The mass number and the atomic number of A_6 are given by :

(1) 210 and 82 (2) 210 and 84 (3) 210 and 80 (4) 211 and 80

7. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Photodiodes are preferably operated in reverse bias condition for light intensity measurement.

Reason (R) : The current in the forward bias is more than the current in the reverse bias for a p - n junction diode.

In the light of the above statement, choose the correct answer from the options given below :

- (1) (A) is false but (R) is true
- (2) (A) is true but (R) is false
- (3) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- (4) Both (A) and (R) are true, and (R) is the correct explanation of the (A)
- **8.** The maximum vertical height to which a man can throw a ball is 136m. The maximum horizontal distance upto which he can throw the same ball is :
 - (1) 272 m (2) 136 m (3) 192 m (4) 68 m
- 9. Given below are two statements : Statement I : The temperature of a gas is -73°C. When the gas is heated to 572°C, the root mean square speed of the molecules is doubled.

Statement II : The product of pressure and volume of an ideal gas will be equal to translational kinetic energy of the molecules.

In the light of the above statements, choose the correct answer from the options given below :

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are false
- (4) Both Statement I and Statement II are true
- **10.** A modulating signal is a square wave, as shown in the figure.

If the carrier wave is given as $c(t) = 2\sin(8\pi t)$ volts, the modulation index is :

(1)
$$\frac{1}{3}$$
 (2) $\frac{1}{2}$ (3) 1 (4) $\frac{1}{4}$

11. A circular loop of radius r is carrying current I A. The ratio of magnetic field at the centre of circular loop and at a distance r from the center of the loop on its axis is :

(1)
$$1: 3\sqrt{2}$$
 (2) $1: \sqrt{2}$ (3) $3\sqrt{2}: 2$ (4) $2\sqrt{2}: 1$

Vidyamandir Classes: Innovating For Your Success

- **12.** From the photoelectric effect experiment, following observations are made. Identify which of these are correct.
 - I. The stopping potential depends only on the work function of the metal
 - II. The saturation current increase as the intensity of incident light increases
 - III. The maximum kinetic energy of a photo electron depends on the intensity of the incident light
 - IV. Photoelectric effect can be explained using wave theory of light
 - Choose the correct answer from the options given below:
 - (1) I, II, IV only (2) II, III only (3) II only (4) I, III, IV only

13. Two long straight wires P and Q carrying equal current 10A each were kept parallel to each other at 5 cm distance. Magnitude of magnetic force experienced by 10 cm length of wire P is F_1 . If distance between wires is halved and currents on them are doubled, force F_2 on 10 cm length of wire P will be :

- (1) $\frac{F_1}{8}$ (2) $\frac{F_1}{10}$ (3) $10F_1$ (4) $8F_1$
- **14.** Given below are two statements :

Statement I : If the Brewster's angle for the light propagating from air to glass is θ_B , then the

Bresster's angle for the light propagating from glass to air is $\frac{\pi}{2} - \theta_B$

Statement II : The Brewster's angle for the light propagating from glass to air is $\tan^{-1}(\mu_g)$ where μ_g is the refractive index of glass.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

15. As per given figure, a weightless pulley P is attached on a double inclined frictionless surfaces. The tension in the string (massless) will be (if $g = 10m/s^2$)

16. A travelling wave is described by the equation $y(x,t) = [0.05\sin(8x-4t)]m$

The velocity of the wave is : [all the quantities are in SI unit]

- (1) $2ms^{-1}$ (2) $4ms^{-1}$ (3) $0.5ms^{-1}$ (4) $8ms^{-1}$
- 17. In $\vec{E} \& \vec{K}$ represent electric field and propagation vectors of the EM waves in vacuum, then magnetic field vector is given by:

($\omega\text{-}$ angular frequency):

(1) $\frac{1}{\omega} \left(\vec{K} \times \vec{E} \right)$ (2) $\omega \left(\vec{K} \times \vec{E} \right)$ (3) $\omega \left(\vec{E} \times \vec{K} \right)$ (4) $\vec{K} \times \vec{E}$

18. As shown in the figure, a network of resistors is connected to a battery of 24V with an internal resistance of 3 Ω . The currents through the resistors $R_4 \& R_5$ are $I_4 \& I_5$ respectively. The values of $I_4 \& I_5$ are :

(1) $I_4 = \frac{6}{5}A \& I_5 = \frac{24}{5}A$ (2) $I_4 = \frac{2}{5}A \& I_5 = \frac{8}{5}A$

(3)
$$I_4 = \frac{24}{5}A \& I_5 = \frac{6}{5}A$$
 (4) $I_4 = \frac{8}{5}A \& I_5 = \frac{2}{5}A$

19. A 100 m long wire having cross-sectional area $6.25 \times 10^{-4} m^2$ and Yough's modulus is $10^{10} Nm^{-2}$ is subjected to a load of 250N, then the elongation in the wire will be :

(1) $6.25 \times 10^{-6} m$ (2) $4 \times 10^{-3} m$

(3)
$$6.25 \times 10^{-3} m$$
 (4) $4 \times 10^{-4} m$

- 20. The weight of a body at the surface of earth is 18 N. The weight of the body at an altitude of 3200 km above the earth's surface is (given, radius of earth $R_e = 6400 \, km$):
 - (1) 9.8 N (2) 4.9 N (3) 8 N (4) 19.6 N

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.

- **21.** A spherical body of mass 2 kg starting from rest acquires a kinetic energy of 10000 J at the end of 5th second. The force acted on the body is N.
- **22.** A block of a mass 2 kg is attached with two identical springs of spring constant 20 N/m each. The block is placed on a frictionless surface and the ends of the springs are attached to rigid supports (see in figure). When the mass is displaced from its equilibrium position, it executes a simple harmonic motion.

The time period of oscillation is $\frac{\pi}{\sqrt{x}}$ in SI unit. The value of x is _____.

- 23. Assume that protons and neutrons have equal masses. Mass of a nucleon is $1.6 \times 10^{-27} kg$ and radius of nucleus is $1.5 \times 10^{-15} A^{1/3} m$. The approximate ratio of the nuclear density and water density is $n \times 10^{13}$. The value of *n* is _____.
- 24. In the circuit shown in the figure, the ratio of the quality factor and the band width is _______s.

- 25. A stream of a positively charged particles having $\frac{q}{m} = 2 \times 10^{11} \frac{C}{kg}$ and velocity $\vec{v}_0 = 3 \times 10^7 \hat{i}m/s$ is deflected by an electric field $1.8 \hat{j}kV/m$. The electric field exists in a region of 10 cm along x direction. Due to the electric field, the deflection of the charge particles in the y direction is _____.
- 26. Solid sphere A is rotating about an axis PQ. If the radius of the sphere is 5 cm then its radius of gyration about PQ will be \sqrt{x} cm. The value of x is _____.

- 27. A hole is drilled in a metal sheet. At 27°C, the diameter of hole is 5 cm. When the sheet is heated to 177°C the change in the diameter of hole is $d \times 10^{-3}$ cm. The value of d will be ______ if coefficient of linear expansion of the metal is $1.6 \times 10^{-5} / °C$.
- 28. Vector $a\hat{i} + b\hat{j} + \hat{k} & 2\hat{i} 3\hat{j} + 4\hat{k}$ are perpendicular to each other when 3a + 2b = 7 the ratio of a to b
 - is $\frac{x}{2}$. The value of x is _____.

- 29. A hollow cylindrical conductor has length of 3.14 m, while its inner and outer diameters are 4 mm and 8 mm respectively. The resistance of the conductor is $n \times 10^{-3} \Omega$. If the resistivity of the material is $2.4 \times 10^{-8} \Omega m$. The value of *n* is _____.
- 30. As shown in the figure, a combination of thin plano concave lens and a thin plano convex lens is used to image an object at infinity. The radius of curvature of both the lenses is 30 cm and refraction index of the material for both the lenses is 1.75. Both the lenses are placed at distance of 40 cm from each other. Due to the combination, the image of the object is formed at distance x =_____ cm from concave lens.

SUBJECT II: CHEMISTRY

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

- **1.** Order of covalent bond ;
 - I. KF > KI; LiF > KF
 - II. KF < KI; LiF > KF
 - III. $SnCl_4 > SnCl_2$; CuCl > NaCl
 - IV. LiF > KF; CuCl < NaCl
 - V. KF < KI; CuCl> NaCl

Choose the correct answer from the options given below:

- (1) II, III, V only (2) III, V only
- (3) II, III only (4) I, II only
- **2.** Assertion (A) : Hydrolysis of an alkyl chloride is a slow reaction but in the presence of NaI, the rate of the hydrolysis increases.

Reason (R) : I^- is a good nuclephile as well as a good leaving group.

In the light of the above statements, choose the correct answer from the options given below

- (1) (A) is false but (R) is true
- (2) Both (A) and (R) are true but (R) is NOT the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true, and (R) is the correct explanation of the (A)
- 3. Match Column I with Column II

	Column I	Column II					
I.	Chlorophyll	Р.	Na ₂ CO ₃				
II.	Soda ash	Q.	CaSO ₄				
III.	Dentistry, Ornamental work	R.	Mg ²⁺				
IV.	Used in white washing	S.	Ca(OH) ₂				
Choose	Choose the correct answer from the options given below :						
(1)	I-R; $II-S$; $III-P$; $IV-Q$	(2)	I-Q ; $II-P$; $III-R$; $IV-S$				
(3)	I - Q; $II - R$; $III - S$; $IV - P$	(4)	I - R; $II - P$; $III - Q$; $IV - S$				

4. Decreasing order of the hydrogen bonding in following forms of water is correctly represented by

I. Liquid water

II. Ice

III. Impure water

Choose the correct answer from the options given below :

	(1)	III > II > I	(2)	I > II > III	(3)	II > I > III	(4)	I = II > III
--	-----	--------------	-----	--------------	-----	--------------	-----	--------------

- 5. The primary and secondary valencies of cobalt respectively in $[Co(NH_3)_5Cl]Cl_2$ are :
 - (1) 2 and 6 (2) 3 and 5 (3) 2 and 8 (4) 3 and 6

- **7.** The magnetic moment of a transition metal compound has been calculated to be 2.87 B.M. The metal ion is
 - (1) V^{2+} (2) Ti^{2+} (3) Cr^{2+} (4) Mn^{2+}
- 8. Increasing order of stability of the resonance structures is :

Statement II : Low level of noradrenaline is not the cause of depression in human

In the light of the above statements, choose the correct answer from the options given below

III, IV, II, I

(4)

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are true

9.

III, IV, I, II

- 10. Statement I : For colloidal particles, the values of colligative properties are of small order as compared to values shown by true solutions at same concentration.
 Statement II : For colloidal particles, the potential difference between the fixed layer and the diffused layer of same charges is called the electrokinetic potential or zeta potential.
 In the light of the above statements, choose the correct answer from the options given below
 (1) Both Statement I and Statement II are true
 - (1) Both Statement I and Statement II are false
 - (2) Both Statement I and Statement II are faise(3) Statement I is false but Statement II is true
 - (4) Statement I is true but Statement II is false
- 11. It is observed that characteristic X-ray spectra of elements show regularity. When frequency to the power "n" i.e., vⁿ of X-rays emitted is plotted against atomic number "Z", following graph is

The value of "n" is

12. 'A' and 'B' formed in the following set of reactions are :

13. Match Column I with Column II

14.

Column I			Column II			
I.	Reverberatory furnace	P.	Pig Iron			
II.	Electrolytic cell	Q.	Aluminum			
III.	Blast furnace	R.	Silicon			
IV.	Zone refining furnace	S.	Copper			
Choose the correct answer from the options given below :						
(1)	I - P; $II - R$; $III - Q$; $IV - S$	(2)	I-S; $II-Q$; $III-P$; $IV-R$			
(3)						
Compound (X) undergoes following sequence of reactions to given the Lactone (Y)						
	OH 0					

15. In the depression of freezing point experiment

I. Vapour pressure of the solutions is less than that of pure solvent

II. Vapour pressure of the solution is more than that of pure solvent

III. Only solute molecules solidify at the freezing point

IV. Only solvent molecules solidify at the freezing point

Choose the most appropriate answer from the options given below :

(1) I and IV only (2) I only (3) II and III only (4) I and III only

16. Reaction of BeO with ammonia and hydrogen fluoride gives A which on thermal decomposition gives BeF₂ and NH₄F. What is 'A'?

(1) $(NH_4)Be_2F_5$ (2) $(NH_4)BeF_3$ (3) $(NH_4)_2BeF_4$ (4) H_3NBeF_3

17. Which of the following is true about freons?

(1) All radicals are called freons

(2) These are chlorofluorocarbon compounds

(3) These are radicals of chlorine and chlorine monoxide

(4) These are chemicals causing skin cancer

18. Which of the Phosphorus oxoacid can create silver mirror from AgNO₃ solution?

(1) $H_4P_2O_7$ (2) $H_4P_4O_5$ (3) $(HPO_3)_n$ (4) $H_4P_2O_6$

19. An ammoniacal metal salt solution gives a brilliant red precipitate on addition of dimethylglyoxime. The metal ion is :

(1)
$$Fe^{2+}$$
 (2) Co^{2+} (3) Ni^{2+} (4) Cu^{2+}

20. 'R' formed in the following sequence of reactions is :

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.

- **21.** If wavelength of the first line of the Paschen series of hydrogen atom is 270 nm, then the wavelength of the second line of this series is _____nm. (Nearest integer).
- **22.** At 298 K, a 1 litre solution containing 10 mmol of $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ and 100 mmol of Cr^{3+} shows a pH of 3.0.

Given :
$$CrO_7^{2-} \rightarrow Cr^{3+}$$
; $E^o = 1.330V$ and $\frac{2.303 \text{ RT}}{F} = 0.059 \text{ V}$

The potential for the half cell reaction is $x \times 10^{-3}$ V. The value of x is _____.

23. For independent processes at 300 K

Process	$\Delta H / kj mol^{-1}$	$\Delta S / J K^{-1}$
А	-25	-80
В	-22	40
С	25	-50
D	22	20

The number of non-spontaneous processes from the following is _____.

24. 5 g of NaOH was dissolved in deionized water to prepare at 450 mL stock solution. What volume (in mL) of this solution would be required to prepare 500 mL of 0.1 M solution?

Given : Molar Mass of Na, O and h is 23, 16 and 1g mol⁻¹ respectively

25. Number of moles of AgCl formed in the following reaction is _____.

$$\begin{array}{c} Cl \\ & \\ H \\ & \\ Cl \end{array} \end{array} \xrightarrow{Cl} Cl \\ & \\ Cl \end{array} \xrightarrow{AgNO_3} (A) + X AgCl \downarrow$$

- 26. The dissociation costant of acetic acid is $x \times 10^{-5}$. When 25 mL of 0.2 M CH₃COONa solution is mixed with 25 mL of 0.02 M CH₃COOH solution, the pH of the resultant solution is found to be equal to 5. The value of x is _____.
- 27. The d-electronic configuration of $[CoCl_4]^{2-}$ in tetrahedral crystal field is $e^m t_2^n$. Sum of "m" and
- 28. Uracil is a base present in RNA with the following structure. % of N in uracil is _____

Given :

Molar mass $N = 14 \text{ g mol}^{-1}$ $O = 16 \text{ g mol}^{-1}$ $C = 12 \text{ g mol}^{-1}$ $H = 1 \text{ g mol}^{-1}$

Vidyamandir Classes: Innovating For Your Success

- **29.** The number of correct statement/s from the following is _
 - I. Larger the activation energy, smaller is the value of the rate constant
 - II. The higher is the activation energy, higher is the value of the temperature coefficient
 - III. At lower temperatures, increase in temperature causes more change in the value of k than at higher temperature
 - IV. A plot of ln k vs $\frac{1}{T}$ is a straight line with slope equal to $-\frac{E_a}{R}$

30. When $Fe_{0.93}O$ is heated in presence of oxygen, it converts to Fe_2O_3 . The number of correct statement/s from the following is _____.

- I. The equivalent weight of $Fe_{0.93}O$ is $\frac{Molecular weight}{0.79}$
- II. The number of moles of Fe^{2+} and Fe^{3+} in 1 mole of $\text{Fe}_{0.93}\text{O}$ is 0.79 and 0.14 respectively
- III. $Fe_{0.93}O$ is metal deficient with lattice comprising of cubic closed packed arrangement of O^{2-} ions
- IV. The % composition of Fe^{2+} and Fe^{3+} in $Fe_{0.93}O$ is 85% and 15% respectively

SUBJECT III: MATHEMATICS

MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

1.	Let α be a root of the equation			
		$\begin{bmatrix} \alpha^2 & \alpha \end{bmatrix}$]	
	numbers such that the	matrix 1 1	is singular	. Then, the value of
		matrix $\begin{bmatrix} \alpha^2 & \alpha & 1 \\ 1 & 1 & 1 \\ a & b & a \end{bmatrix}$		
	$(a-c)^2$ $(b-a)^2$	$(c-b)^2$	-	
	$\frac{(a-c)^2}{(b-a)(c-b)} + \frac{(b-a)^2}{(a-c)(c-b)}$	$+\frac{1}{(a-c)(b-a)}$ is		
	(1) 3 (2)	12 (3)	9 (4) 6
2.	Let $\vec{u} = \hat{i} - \hat{j} - 2\hat{k}, \ \vec{v} = 2\hat{i} + \hat{j} - \hat{j}$	$-\hat{k}, \vec{v} \cdot \vec{w} = 2$ and $\vec{v} \times \vec{v}$	$\vec{v} = \vec{u} + \lambda \vec{v}$. The \vec{u}	$\cdot \vec{w}$ is equal to
	(1) $\frac{3}{2}$ (2)			4) $-\frac{2}{2}$
	$(1) \frac{1}{2}$ (2)	2 (3)	1 ($-\frac{1}{3}$
	(1 1 1	$\sin^2 t$		
3.	$\lim_{t \to 0} \left(1^{\frac{1}{\sin^2 t}} + 2^{\frac{1}{\sin^2 t}} + \dots + n^{\frac{1}{\sin^2 t}} \right)$	$\frac{1}{1^2 t}$ is equal to		
	$t \rightarrow 0$			
	(1) n^2 (2)	n (3)	$\frac{n(n+1)}{2}$ (4) $n^2 + n$
			2	
4.	The relation $R = \{(a, b); gcd(a)\}$	$(a,b) = 1, 2a \neq b, a, b \in$	Z is :	
	(1) Symmetric but not transi(3) Neither symmetric nor tr		Reflexive but not	-
	(3) Neither symmetric nor tr	ransitive(4) Transi	tive but not reflexi	ve
5.	(3) Neither symmetric nor tr	ransitive(4) Transi	tive but not reflexi	ve
5.	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of the solution o	ransitive(4) Transi	tive but not reflexi	ve
5.	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of the $y(1)$ is equal to	ransitive(4) Transi	tive but not reflexion $x^3 dy + (xy - 1)d$	ve
	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of the true $y(1)$ is equal to (1) $2-e$ (2)	ransitive(4) Transi the differential equatio	tive but not reflexing $x^3 dy + (xy - 1)d$ 3	$dx = 0, x > 0, y\left(\frac{1}{2}\right) = 3 - e.$ 4) e
5. 6.	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of the $y(1)$ is equal to	ransitive(4) Transitive(4) Transitive(4) Transitive(4) Transitive(4) Transitive(3) Tr	tive but not reflexing $x^3 dy + (xy - 1)d$ 3	$dx = 0, x > 0, y\left(\frac{1}{2}\right) = 3 - e.$ 4) e eger function, has :
	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of the function of the function $y(1)$ is equal to (1) $2-e$ (2) The equation $x^2 - 4x + [x] + 3 = 1$	ransitive(4) Transitive(4) Transitive(4) Transitive(4) Transitive(4) Transitive(3) Tr	tive but not reflexing $x^{3}dy + (xy-1)d$ 3 (1) tes the greatest interview of the second	$dx = 0, x > 0, y\left(\frac{1}{2}\right) = 3 - e.$ 4) e eger function, has : tion in $(-\infty, \infty)$
6.	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of x Then $y(1)$ is equal to (1) $2-e$ (2) The equation $x^2 - 4x + [x] + 3 =$ (1) A unique solution in (-4) (3) No solution	ransitive(4) Transitive(4) Tr	tive but not reflexion $x^{3}dy + (xy-1)d$ 3 (tes the greatest interview the solution A unique solution	$dx = 0, x > 0, y\left(\frac{1}{2}\right) = 3 - e.$ 4) e eger function, has : tion in $(-\infty, \infty)$ in in $(-\infty, \infty)$
	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of x Then $y(1)$ is equal to (1) $2-e$ (2) The equation $x^2 - 4x + [x] + 3 =$ (1) A unique solution in (ransitive(4) Transitive(4) Tr	tive but not reflexion $x^{3}dy + (xy-1)d$ 3 (tes the greatest interview the solution A unique solution	$dx = 0, x > 0, y\left(\frac{1}{2}\right) = 3 - e.$ 4) e eger function, has : tion in $(-\infty, \infty)$ in in $(-\infty, \infty)$
6.	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of x Then $y(1)$ is equal to (1) $2-e$ (2) The equation $x^2 - 4x + [x] + 3 =$ (1) A unique solution in (-c) (3) No solution Let $p,q \in \mathbb{R}$ and $(1 - \sqrt{3}i)^{200} =$ the equation.	ransitive (4) Transitive (4) Transitive (4) Transitive (4) Transitive (4) $1 \qquad (3)$ x[x], where $[x]$ denomes (2) x(x), 1) (2) (4) $x=2^{199}(p+iq), i = \sqrt{-1}$	tive but not reflexing $x^{3}dy + (xy - 1)d$ 3 (1) tes the greatest interval Exactly two solution A unique solution $\overline{1}$. Then $p + q + q$	$dx = 0, x > 0, y\left(\frac{1}{2}\right) = 3 - e.$ 4) e eger function, has : tion in $(-\infty, \infty)$ in in $(-\infty, \infty)$
6.	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of x Then $y(1)$ is equal to (1) $2-e$ (2) The equation $x^2 - 4x + [x] + 3 =$ (1) A unique solution in (-4) (3) No solution Let $p,q \in \mathbb{R}$ and $(1 - \sqrt{3}i)^{200} =$ the equation. (1) $x^2 - 4x + 1 = 0$	ransitive (4) Transitive (4) Transitive (4) Transitive (4) Transitive (4) Transitive (4) (3) Transitive (3) Transitive (4) $x = x[x]$, where $[x]$ denotes ∞ , 1) (2) (4) $(4) = 2^{199}(p + iq), i = \sqrt{-1}$ (2)	tive but not reflexion $x^{3}dy + (xy-1)d$ 3 (tes the greatest interview of the solution A unique solution $\overline{1}$. Then $p + q + q$ $x^{2} - 4x - 1 = 0$	$dx = 0, x > 0, y\left(\frac{1}{2}\right) = 3 - e.$ 4) e eger function, has : tion in $(-\infty, \infty)$ in in $(-\infty, \infty)$
6.	(3) Neither symmetric nor tr Let $y = y(x)$ be the solution of x Then $y(1)$ is equal to (1) $2-e$ (2) The equation $x^2 - 4x + [x] + 3 =$ (1) A unique solution in (-c) (3) No solution Let $p,q \in \mathbb{R}$ and $(1 - \sqrt{3}i)^{200} =$ the equation.	ransitive (4) Transitive (4) Transitive (4) Transitive (4) Transitive (4) Transitive (4) (3) Transitive (3) Transitive (4) $x = x[x]$, where $[x]$ denotes ∞ , 1) (2) (4) $(4) = 2^{199}(p + iq), i = \sqrt{-1}$ (2)	tive but not reflexing $x^{3}dy + (xy - 1)d$ 3 (1) tes the greatest interval Exactly two solution A unique solution $\overline{1}$. Then $p + q + q$	$dx = 0, x > 0, y\left(\frac{1}{2}\right) = 3 - e.$ 4) e eger function, has : tion in $(-\infty, \infty)$ in in $(-\infty, \infty)$

Let PQR be a triangle. The points A, B and C are on the sides *QR*, *RP* and *PQ* respectively such that $\frac{QA}{AR} = \frac{RB}{BP} = \frac{PC}{CQ} = \frac{1}{2}$ Then $\frac{Area(\Delta PQR)}{Area(\Delta ABC)}$ is equal to : (1) 3 (2) 4 (3) $\frac{5}{2}$ (4) 2

9. Let
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Then at x = 0

(1) f is continuous but f' is not continuous

- (2) f' is continuous but not differentiable
- (3) f is continuous but not differentiable
- (4) f and f' both are continuous

10. The distance of the point (-1,9,-16) from the plane 2x+3y-z=5 measured parallel to the line

$$\frac{x+4}{3} = \frac{2-y}{4} = \frac{z-3}{12}$$
 is
(1) 26 (2) $13\sqrt{2}$ (3) $20\sqrt{2}$ (4) 31

11. The value of $\sum_{r=0}^{22} {}^{22}C_r {}^{23}C_r$ is (1) ${}^{45}C_{24}$ (2) ${}^{44}C_{23}$ (3) ${}^{44}C_{22}$ (4) ${}^{45}C_{23}$

12. If A and B are two non-zero $n \times n$ matrics such that $A^2 + B^2 = A^2 B$, then

$$(1) \qquad A^2 B = B A^2 \qquad (2) \qquad A B = I$$

(3)
$$A^2 = I \text{ or } B = I$$
 (4) $A^2 B = I$

13. Let Ω be the sample space and $A \subseteq \Omega$ be an event.

Given below are two statements:

Statement I : If P(1) = 0, then $A = \phi$

Statement II : P(1) = 1, then $A = \Omega$

Then

- (1) Both Statement I and Statement II are false
- (2) Only Statement II is true
- (3) Only Statement I is true
- (4) Both Statement I and Statement II are true
- 14. Let *N* denote the number that turns up when a fair die is rolled. If the probability that the system of equations

$$x + y + z = 1$$

$$2x + Ny + 2z = 2$$

$$3x + 3y + Nz = 3$$

Has unique solution is $\frac{k}{6}$, then the sum of value of k and all possible values of N is
(1) 20 (2) 18 (3) 21 (4) 19

		VI	dyamai	ndir Classes:	Innovatin	g For You	Ir Success		
15.	For three positive integers $p,q,r, x^{pq^2} = y^{qr} = z^{p^2r}$ and $r = pq+1$ such that 3, 3 $\log_y x$, $3\log_z y$,								
	$7\log_x z$ are in A.P. with common difference $\frac{1}{2}$. Then $r - p - q$ is equal to								
	(1)	12	(2)	2	- (3)	-6	(4)	6	
16.		istance of the po l,2) is :	int (7,-	-3,-4) from th	ne plane pa	ssing throu	igh the points	(2,-3,1), (-1,1,-2)	and
	(1)	$4\sqrt{2}$	(2)	$5\sqrt{2}$	(3)	4	(4)	5	
17.		tangent to the cu h line segment A Directrix 4x =	B lie on				e points A and x $4x = -3$	B. Then the mid-po	oints
	(3)	Length of latu	s rectum	1	(4)	Length	of latus rectum	$\frac{3}{2}$	
18.	The a	rea enclosed by t	he curve	es $y^2 + 4x =$	4 and $y-$	2x = 2 is :			
	(1)	9	(2)	$\frac{23}{3}$	(3)	$\frac{22}{3}$	(4)	$\frac{25}{3}$	
19.	The c	ompound statem	ent (~ <i>p</i>	$p \land (Q)) \lor ((\gamma$	$(P \land Q) =$	$\Rightarrow ((\sim P))$	\wedge (~ Q)) is eq	uivalent to	
	(1)	$((\sim P) \lor Q)$					$\lor Q) \land ((\sim Q)$		
	(3)	$(\sim Q) \lor P$			(4)	(~ <i>P</i>) ∨	'Q		
20.	tan ⁻¹	$\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec(\frac{1+\sqrt{3}}{3+\sqrt{3}}) = 1$	$2^{-1}\left(\sqrt{\frac{8}{6}}\right)$		qual to :				
	(1)	$\frac{\pi}{2}$	(2)	$\frac{\pi}{6}$	(3)	$\frac{\pi}{4}$	(4)	$\frac{\pi}{3}$	

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.

21. Suppose
$$\sum_{r=0}^{2023} r^{2} 2023 C_r = 2023 \times \alpha \times 2^{2022}$$
. Then the value of α is _____.

22. A boy needs to select five courses from 12 available courses , out of which 5 courses are language courses. If he can choose at most two language courses, then the number of ways he can choose five courses is _____.

23. The value of
$$12\int_{2}^{3} |x^2 - 3x + 2| dx$$
 is _____.

24. Let a tangent to the curve $9x^2 + 16y^2 = 144$ intersect the coordinate axes at the point A and B. Then, the minimum length of the lien segment AB is _____.

25. The 4th term of GP is 500 and its common ratio is $\frac{1}{m}$, $m \in N$. Let S_n denote the sum of the fist *n* terms of this GP. If $S_6 > S_5 + 1$ and $S_7 < S_6 + \frac{1}{2}$, then the number of possible values of *m* is _____,

- **26.** The number of 9 digit numbers, that can be formed using all the digits of the number 123412341 so that the even digit occupy only even places, is _____.
- 27. Let $\lambda \in R$ and let the equation E to $|x|^2 2|x| + |\lambda 3| = 0$. Then the largest element in the set $S = \{x + \lambda : x \text{ is an integer solution of E}\}$ is _____.

28. The value of
$$\frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx$$
 is _____.

π

- 29. The shortest distance between the lines $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-6}{2}$ and $\frac{x-6}{3} = \frac{1-y}{2} = \frac{z+8}{0}$ is equal to
- **30.** Let C be the largest circle centred at (2,0) and inscribed in the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$. If (1, α) lies on C, then $10\alpha^2$ is equal to _____.