Solutions to JEE Main 2024 | Sample Paper

Physics

SINGLE CHOICE

1.(C) Pendulum length $l=(2 \pm 0.1) \mathrm{cm}$
$T=(2.5 \pm 0.05) \mathrm{sec}$
Acceleration due to gravity $\quad g=4 \pi^{2} \frac{l}{T^{2}} ; \quad \frac{\Delta g}{g}=\frac{\Delta l}{l}+2\left(\frac{\Delta T}{T}\right)=\left(\frac{0.1}{2}+2 \times \frac{0.05}{2.5}\right)=0.09$
Percentage error $=0.09 \times 100=9 \%$
2.(B) Maximum velocity of particle
$\left(V_{P}\right)_{\text {max }}=2 \pi b A$
Wave velocity $=\frac{b}{a}$
Given $2 \pi b A=\frac{4 b}{a} ; \quad A=\frac{2}{\pi a}$
3.(C) We know $g_{s}=\frac{G M}{R_{e}^{2}}$

Given $m g_{s}=900 \mathrm{~N}$
g at height $\quad g=\frac{G M}{\left(R_{e}+h\right)^{2}}=\frac{4 G M}{9 R_{e}^{2}}=\frac{4}{9} \times\left(\frac{G M}{R_{e}^{2}}\right)$
New weight $=m g=\frac{4}{9} m g_{s}=\frac{4}{9} \times 900=400 \mathrm{~N}$
4.(C)

$t=\frac{5 T}{24}$
5.(D) For LR circuit, $\tan \phi=\frac{x_{L}}{R}=2$

Old power factor $=\cos \phi=\frac{1}{\sqrt{5}}$
For $L C R$ circuit, $\tan \phi^{\prime}=\frac{X_{L}-X_{C}}{R}=\frac{2 R-R}{R}=1$
New power factor $=\cos \phi^{\prime}=\frac{1}{\sqrt{2}}$

$$
\therefore \quad \text { Required ratio }=\sqrt{\frac{5}{2}}
$$

6.(C) Dimensions of $\mu=\left[M L T^{-2} A^{-2}\right]$

Dimensions of $\varepsilon=\left[M^{-1} L^{-3} T^{4} A^{2}\right]$
Dimensions of $R=\left[M L^{2} T^{-3} A^{-2}\right]$
Dimensions of $\frac{\mu}{\varepsilon}=\left[M^{2} L^{4} T^{-6} A^{-4}\right]=\left[R^{2}\right]$
7.(D) Given Maximum height of two projectiles are equal
$\frac{U_{A}^{2} \sin ^{2} 30^{\circ}}{2 g}=\frac{U_{B}^{2} \sin ^{2} 60^{\circ}}{2 g} ; \quad \frac{U_{A}}{U_{B}}=\sqrt{3}$
Ratio of ranges $\quad \frac{R_{A}}{R_{B}}=\frac{\frac{U_{A}^{2} \sin 60^{\circ}}{g}}{\frac{U_{B}^{2} \sin 120^{\circ}}{g}}=\left(\frac{U_{A}}{U_{B}}\right)^{2} ; \quad \frac{R_{A}}{R_{B}}=\frac{3}{1}$
8.(D) At steady state

Inductor behaves like connecting wire
All of these three resistance are in parallel
So current in
25Ω is 4 A
5Ω is 20 A
20Ω is 5 A
Total current $=29 \mathrm{~A}$
By applying KCL at junctions
Current in L_{1} is 25 A

Current in L_{2} is 24 A
So, ration is $\frac{25}{24}$
9.(C) Given \vec{E} parallel to \vec{B}
θ : angle velocity vector with field
$F_{n e t}=q \vec{E}+q \vec{v} \times \vec{B}$
If θ is 0° or 180° the particle follow straight line as only electric force will be acting
For other angles particle will follow helical path with variable pitch
So most appropriate answer is (C)

10.(D) Given $\vec{E}=\frac{2 h t}{\lambda_{0} q t^{2}}$
$F=q E=\frac{2 h t}{\lambda_{0} T^{2}}$
$\Delta \vec{P}=\int F . d t$
$P=\frac{2 h}{\lambda_{0} T^{2}} \int_{0}^{t} t d t ; \quad P=\frac{h t^{2}}{\lambda_{0} T^{2}}$
We know $\quad \lambda_{\text {debroglie }}=\frac{h}{P}=\frac{\lambda_{0} T^{2}}{t^{2}}$
11.(C) We know for solid spherical charge distribution
$V(r)=\left\{\begin{array}{ll}r<R & \frac{K Q}{2 R^{3}}\left(3 R^{2}-r^{2}\right) \\ r \geq R & \frac{K Q}{r}\end{array}\right\}$
For $r<R$, open downward parabolic
$r>R$, hyperbolic
12.(B) Binding energy per nucleon decides the stability of a nucleus. Higher is the binding energy per nucleon more is the stability.
13.(B) Given
$\vec{r}=10 t^{2} \hat{i}+5 t^{3} \hat{j}$
$\vec{v}=20 t \hat{i}+15 t^{2} \hat{j}$
$m=200 \mathrm{gm}=\frac{1}{5} \mathrm{~kg}$
$\vec{P}=m \vec{v}$
$P=4 t \hat{i}+3 t^{2} \hat{j}$
Given $\quad P_{y}=12$

$$
\begin{aligned}
& 3 t^{2}=12 \\
& t=2
\end{aligned}
$$

$P_{x}=4 \times 2=8$
14.(B) For satellite

$$
P E=\frac{-G M m}{r}
$$

$K E=\frac{G M m}{2 r}$
$T E=\frac{-G M m}{2 r} ; T E=-K E$
Binding energy $=-T E=K E$
15.(C) Given $\left|\vec{v}_{A}\right|=\left|\vec{v}_{B}\right|=v_{0}$
$\vec{v}_{\text {red }}=\vec{v}_{B}-\vec{v}_{A}$
$\left|\vec{v}_{B}-\vec{v}_{A}\right|=\sqrt{v_{A}^{2}+v_{B}^{2}-2 v_{A} v_{B} \cos \theta}$

$=\sqrt{v_{0}^{2}+v_{0}^{2}-2 v_{0}^{2} \cos 60^{\circ}}=v_{0}$
16.(B) Given circuit

Output, $Y=\overline{\bar{A}} \cdot \bar{B}=\bar{A}+\bar{B}=A+B$
Truth Table

A	B	$Y=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

So, most appropriate option is (B).
17.(C) T.E. $=\frac{1}{2}$ stress \times strain \times volume $=\frac{1}{2} \frac{T}{A}\left[\frac{\Delta l_{c u}}{l_{c u}} \times V_{c u}+\frac{\Delta l_{\text {steel }}}{l_{\text {steel }}} \times V_{\text {steel }}\right]$
$=\frac{1}{2} \frac{T}{A}\left[\frac{T}{Y_{c u} A}\left(A l_{c u}\right)+\frac{T}{Y_{\text {steel }} A}\left(A l_{\text {steel }}\right]=\frac{1}{2} \frac{T^{2}}{A}\left[\frac{l_{c u}}{Y_{c u}}+\frac{l_{\text {steel }}}{Y_{\text {steel }}}\right]=0.25 \mathrm{~J}\right.$
18.(C) In adiabatic process $Q=0$

But temperature can change due to work by gas
So statement 1 is incorrect
Statement 2 is correct
19.(B) Pressure of gas inside the balloon is same as the pressure of surrounding. Also gas inside the balloon obeys isothermal process, then :
$\left(P_{0}+\rho g h\right) V_{1}=P_{0} V_{2} \quad \therefore V_{2}=\left(1+\frac{10^{3} \times 10 \times 40}{10^{5}}\right) \times 0.09=0.45 \mathrm{~m}^{3}$
20.(A) For a telescope in normal setting
$f_{0}+f_{e}=L$
(length of the tube of telescope)
and $\frac{f_{0}}{f_{e}}=m$ (magnification)
where $f_{0} \& f_{e}$ is the focal length of the objective and eyepiece, respectively. According to the given values in the question, we have $f_{0}+f_{e}=60 \mathrm{~cm} \& \frac{f_{0}}{f_{e}}=5 ; f_{e}=10 \mathrm{~cm}$

NUMERICAL TYPE

1.(300) We know $K E=\frac{P^{2}}{2 m}$

If KE is increased 1500%
Then new KE is 16 times of initial KE

$$
P_{f}=4 P_{i}
$$

$\Delta P=3 P_{i}$
Impulse $=3 P_{i}$
So impulse is 300% of initial momentum
2.(66) Mass of one atom of U^{235} is 235.121420 amu

Mass of one neutron $=1.008665 \mathrm{amu}$
Sum of the masses of U^{235} and neutron $=236.130085=236.130 \mathrm{amu}$
Mass of one atom of U^{236} is $236.123050 \mathrm{amu}=236.123 \mathrm{amu}$
Mass defect $=236.136-236.123=0.007 \mathrm{amu}$
Therefore, energy require to remove one neutron is $0.007 \times 931 \mathrm{MeV}=6.517 \mathrm{MeV}=6.5 \mathrm{MeV}$
3.(60) Torque applied on a dipole $\tau=p E \sin \theta$ where $\theta=$ angle between axis of dipole and electric field
For electric field $E_{1}=E \hat{i}$
It means field is directed along positive X direction so angle between dipole and field will remain θ therefore torque in this direction

$$
\tau_{1}=p E_{1} \sin \theta
$$

In electric field $E_{2}=\sqrt{3} E \hat{j}$
It means field is directed along positive Y -axis so angle between dipole and field will be $90^{\circ}-\theta$
Torque in this direction
$\tau_{2}=p E \sin \left(90^{\circ}-\theta\right)=p \sqrt{3} E_{1} \cos \theta$
According to question
$\tau_{2}=-\tau_{1} \Rightarrow\left|\tau_{2}\right|=\left|\tau_{1}\right| \quad \therefore p E_{1} \sin \theta=p \sqrt{3} E_{1} \cos \theta$
$\tan \theta=\sqrt{3} \Rightarrow \tan \theta=\tan 60^{\circ} \quad \therefore \theta=60^{\circ}$
4.(7) $f_{0}-f_{c}=2$
$\frac{v}{2 l}-\frac{v}{4 l}=2$ or $\frac{v}{4 l}=2 ; \frac{v}{l}=8$
When length of OOP is halved and that of COP is doubled, the beat frequency will be
$f^{\prime}{ }_{0}-f^{\prime}{ }_{c}=\frac{v}{l}-\frac{v}{8 l}=\frac{7}{8} \frac{v}{l}=\frac{7}{8} \times 8=7$
5.(6) $\quad I=\frac{2}{3} M R^{2} \quad$ (hollow - hemisphere)
$I=\frac{4}{6} M R^{2} \quad \therefore x=6$
6.(150) Given, length of mirror, $m=50 \mathrm{~cm}=50 \times 10^{-2} \mathrm{~m}$

Distance of source from mirror, $d=60 \mathrm{~cm}=60 \times 10^{-2} \mathrm{~m}$
Distance of man from mirror, $d_{m}=1.2 \mathrm{~m}$
By using the concept of ray diagram of plane mirror shown below

Now, using the concept of similar triangle
$\triangle H A \ell \sim \triangle G A E \& \triangle B A \ell \sim \triangle C A E$
$\therefore \frac{A \ell}{A E}=\frac{H \ell}{E G} \quad \Rightarrow \frac{0.60}{1.8}=\frac{0.25}{E G} \quad(\because A \ell=\ell S)$
$\Rightarrow E G=0.25 \times \frac{1.8}{0.6}=0.25 \times 3=0.75 \mathrm{~m}$
$C G=2 E G \Rightarrow C G=0.75 \times 2=1.50 \mathrm{~m}$
Hence, distance between the extreme points, where he can see image of light source in mirror is 150 cm
7.(21) Magnetic field due to a ling solenoid is given by
$B=\mu_{0} n I$
From given data
$6.28 \times 10^{-2}=\mu_{0} \times 200 \times 10^{2} \times I$
$B=\mu_{0} \times 100 \times 10^{2} \times\left(\frac{I}{3}\right)$
Solving equation (i) and (ii), we get
$B \approx 1.05 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}=10.5 \mathrm{mT}$
8.(1) $\quad l=5 A$
$\rho=1.7 \times 10^{-8} \Omega-m$
$r=5 \mathrm{~mm}=5 \times 10^{-3} \mathrm{~m}$
$v_{d}=1.1 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
Mobility of charges in a conductor is given by
$\mu=\frac{v_{d}}{E}$
And resistivity is given by
$\rho=\frac{E}{J}=\frac{E}{l / A} \quad\left(\because J=\sigma E=\frac{1}{\rho} \times E\right)$
$\Rightarrow \rho=\frac{E A}{l}$
$E=\frac{\rho l}{A}$
From equation (i) and (ii), we get $\quad \mu=\frac{v_{d} A}{\rho l}$
Substituting the given values we get
$=\frac{1.1 \times 10^{-3} \times \pi \times\left(5 \times 10^{-3}\right)^{2}}{1.7 \times 10^{-8} \times 5}=\frac{86.35 \times 10^{-9}}{8.5 \times 10^{-8}}=10.1 \times 10^{-1} \Rightarrow \mu \approx 1 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
9.(3) The total energy is given as,

$$
U=\frac{1 Q^{2}}{2 C}
$$

The energy stored in the capacitor is given as,

$$
\begin{aligned}
U_{C} & =\frac{1(Q / 2)^{2}}{2 C} \\
U_{C} & =\frac{1}{4} U
\end{aligned}
$$

The energy stored in the inductor is given as,

$$
\begin{aligned}
& U_{L}=U-\frac{1}{4} U \\
& U_{L}=\frac{3}{4} U
\end{aligned}
$$

10.(20) The velocity attained by the sphere in falling freely from a height h is
$v=\sqrt{2 g h}$
This is the terminal velocity of the sphere is water. Hence by Stoker's law, we have
$v=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{\eta}$
Where r is the radius of the sphere, ρ is the density of the material of the sphere
$\sigma\left(1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)$ is the density of water and η is coefficient of viscosity of water
$v=\frac{2 \times\left(1.0 \times 10^{-3}\right)^{2}\left(1.0 \times 10^{4}-1.0 \times 10^{3}\right) \times 10}{9 \times 1.0 \times 10^{-3}}=20 \mathrm{~m} / \mathrm{s}$
From equation (i) we have $h=\frac{v^{2}}{2 g}=\frac{20 \times 20}{2 \times 10}=20 \mathrm{~m}$

Chemistry

SINGLE CHOICE

1.(B) $\quad \mathrm{S}_{8}+12 \mathrm{OH}^{-} \longrightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
$x=4, y=2$
$x^{y}=16$
2.(B) To be spontaneous $\mathrm{E}_{\text {cell }}>0$
$\mathrm{E}_{\text {cell }}=-\frac{0.0529}{\mathrm{n}} \log \left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right) \quad \therefore \mathrm{P}_{1}<\mathrm{P}_{2}$
3.(B) At cathode $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$

At anode $2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
Moles of $\mathrm{e}^{-}=\frac{\text { it }}{96500}=\frac{5 \times 965}{96500}=0.05 \mathrm{~mol}$
Moles of OH^{-}formed $=0.05$
$\left[\mathrm{OH}^{-}\right]=\frac{0.05}{0.5}=1 \times 10^{-1}$
$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-13}$ and $\mathrm{pH}=13$
4.(C) Due to inert pair effect the stability of lower oxidation state gradually increases while stability of higher oxidation state gradually decreases down the group in elements of group $13^{\text {th }}$ to $15^{\text {th }}$. So correct order are :
$\mathrm{Pb}^{2+}>\mathrm{Pb}^{4+}, \mathrm{Bi}^{3+}>\mathrm{Bi}^{5+}$
$\mathrm{Sn}^{2+}<\mathrm{Pb}^{2+}, \mathrm{Sn}^{4+}>\mathrm{Pb}^{4+}$
5.(D) $\quad \Delta \mathrm{H}(\mathrm{A} \rightarrow \mathrm{B})=-10 \mathrm{~kJ} / \mathrm{mol}$, i.e., it is an exothermic reaction

$\mathrm{E}_{\mathrm{a}}(\mathrm{A} \rightarrow$ activated state $)=50 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{E}_{\mathrm{a}}(\mathrm{B} \rightarrow$ activated state $)=50+10=60 \mathrm{~kJ} / \mathrm{mol}$
6.(C) NCERT based fact
7.(D) Magnetic moment $=\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{BM}$

N : Number of unpaired e^{-}
As atomic number increases in d-block element number of unpaired e^{-}first increases upto middle then decreases.
8.(D) If the resultant dipole moment is zero then molecule is non-polar.
9.(B) CuCl_{2} and CuF_{2} is stable hence doesn't show above reaction.
10.(B) Compound I is d^{6} with all electrons paired so number of unpaired electrons $=0$

Compound II is d^{3} number of unpaired electrons $=3$
Compound III is d^{6} with all electrons paired so number of unpaired electrons $=0$
Compound IV is d^{8} with all electrons paired so number of unpaired electrons $=0$
11.(D)

12.(D) CN^{-}with $\mathrm{Fe}^{3+} ; \mathrm{H}_{2} \mathrm{O}$ and NO_{2}^{-}with Co^{3+} will form low spin complexes with hybridization $\mathrm{d}^{2} \mathrm{sp}^{3}$
13.(B)

14.(C) LiAlH_{4} can reduce ester as well as carbonyl to alcohol.
15.(D) Boiling point of ethylene glycol is more than ethanol.
16.(A) $\rightarrow \quad 1^{\circ}$ Aliphatic amine reacts with Nitrous Acid to give N_{2} gas
$\rightarrow \quad 1^{\circ}$ Aliphatic Amine and Aniline reacts with CHCl_{3} and KOH to give Carbylamine which has foul odour.
$\rightarrow \quad\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ is strongest base, So has lowest value of $\mathrm{pK} \mathrm{b}_{\mathrm{b}}$
$\rightarrow \quad 3^{\circ}$ Amines do not reacts with benzenesulphonyl chloride
17.(A) Tyrosine

18.(C) $\begin{array}{ccccc} & 2 \mathrm{HI}(\mathrm{g}) & \rightleftharpoons & \mathrm{H}_{2}(\mathrm{~g}) & + \\ \mathrm{I}_{2}(\mathrm{~g}) \\ \mathrm{t}=0 & 0.2 \mathrm{~atm} & & 0 & 0 \\ \text { change } & -2 \mathrm{x} & & +\mathrm{x} & +\mathrm{x} \\ & \mathrm{t}=\mathrm{t}_{\text {eq }} & (0.2-2 \mathrm{x}) & & \mathrm{x}\end{array}$

From question, $0.2-2 \mathrm{x}=0.04$
$2 \mathrm{x}=0.2-0.04=0.16$
$K_{P}=\frac{0.08 \times 0.08}{(0.04)^{2}}=4$
$K_{P}=K_{C}(R T)^{\Delta n}$
$\Delta \mathrm{n}=0$
$\therefore \mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}$
19.(B) Sodium bisulphite solution show addition reaction with aldehyde and not with alcohols

Sodium bicarbonate solution reacts with acid to release CO_{2} gas but not with phenols
Tollen's reagent forms silver salt with terminal alkynes
20.(B) $\quad \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]$
(+2)
$\mathrm{Fe}^{2+}: \mathrm{s}^{0} \mathrm{~d}^{6}$

NUMERICAL VALUE TYPE

1.(6)

Mass gain due to incorporation of one acetyl group $=59-17=42$
Net mass gain due to acetylation $=518-266=252$
Hence, six hydroxyl groups $(6 \times 42=252)$ were present
2.(4) As, all lines of P-fund terminate at $n=5$ from energy levels above. So, here no line observed in P-fund series
Total number of possible lines observed $=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)\left(\mathrm{n}_{2}-\mathrm{n}_{1}+1\right)}{2} \quad\left[\because \mathrm{n}_{1}=1 ; \mathrm{n}_{2}=5\right]$
$=\frac{(5-1)(5-1+1)}{2}=10$
4 lines corresponding to following transition observed in UV region
$5 \rightarrow 1 ; 4 \rightarrow 1 ; 3 \rightarrow 1 ; 2 \rightarrow 1$
3 lines observed in Balmer series corresponding to following transition :
$5 \rightarrow 2 ; 4 \rightarrow 2 ; 3 \rightarrow 2$
3.(3) I, II, III are more ionic than AlCl_{3}.
4.(8) $\quad C_{p}=4 R \Rightarrow C_{p}-C_{v}=R \quad \because C_{v}=3 R$
$\gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\frac{4 \mathrm{R}}{3 \mathrm{R}}=1.33$
For adiabatic expansion
$\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{\gamma-1}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)=\left(\frac{300}{150}\right) \Rightarrow\left(\frac{\mathrm{n} \mathrm{V}_{1}}{\mathrm{~V}_{1}}\right)^{\gamma-1}=\left(\frac{2}{1}\right) \Rightarrow(\mathrm{n})^{1.33-1}=(2)$
$\Rightarrow(\mathrm{n})^{0.33}=(2) \Rightarrow(\mathrm{n})=(2)^{3} \Rightarrow \mathrm{n}=8$
5.(125) From graph I and II,
$\Delta \mathrm{T}_{\mathrm{b}}=105-100=5$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{mK}_{\mathrm{b}}$
$5=1 \mathrm{~mol} \mathrm{~kg}^{-1} \times \mathrm{K}_{\mathrm{b}}$
$\mathrm{K}_{\mathrm{b}}=5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
From graph I and III
$\Delta \mathrm{T}_{\mathrm{b}}=110-100=10$
$\mathrm{m}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{b}}}=\frac{10}{5}=2$
2 moles of solute in 1 kg of solvent
$2 \mathrm{M}_{\mathrm{s}}$ grams of solute in $\left(1000+2 \mathrm{M}_{\mathrm{s}}\right)$ grams of solution

$$
\begin{aligned}
& \frac{20}{100}=\frac{2 \mathrm{M}_{\mathrm{s}}}{1000+2 \mathrm{M}_{\mathrm{s}}} \\
& \mathrm{M}_{\mathrm{s}}=125
\end{aligned}
$$

6.(7) Given $\mathrm{pH}=4.63$
$\left[\mathrm{H}^{+}\right]=10^{-4.63}$
$=2.33 \times 10^{-5} \mathrm{M}$
$\frac{\left[\mathrm{ln}^{-}\right]}{[\mathrm{HIn}]}=\frac{75}{25}=3$
$\mathrm{K}_{\mathrm{In}}=2.33 \times 10^{-5} \times \frac{75}{25} \simeq 7.0 \times 10^{-5} \mathrm{M}$
7.(3) I. $\quad \mathrm{K}=\mathrm{Ae}^{-\mathrm{E}_{\mathrm{a}} / \mathrm{RT}}$

$$
\text { If } \mathrm{T} \rightarrow \infty \text { or } \mathrm{Ea} \rightarrow 0 \text { then } \mathrm{K}=\mathrm{A}
$$

II. Catalyst does not change $\Delta \mathrm{H}$ of reaction
III. A negative catalyst decrease rate of reaction by increasing activation energy
8.(2) Correct order are :
I. $\quad \mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$ (bond energy)
II. $\quad \mathrm{Tl}>\mathrm{In}>\mathrm{Al}>\mathrm{Ga}>\mathrm{B}$ (atomic size)
III. $\quad \mathrm{C}>\mathrm{Pb}>\mathrm{Si}=\mathrm{Ge}=\mathrm{Sn}$ (electronegativity)
IV. $\quad \mathrm{Si}<\mathrm{C}<\mathrm{Ge}<\mathrm{Sn}<\mathrm{Pb}$ (density)
V. $\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}\left(\mathrm{E}_{\mathrm{M}^{+3} / \mathrm{M}}^{0}\right)$
9.(68) As per question,
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ satisfies the condition
\therefore Molar mass of $\mathrm{C}_{5} \mathrm{H}_{8}$ is 68 .
10.(73) $\quad \% \mathrm{C}=\frac{12}{44} \times \frac{\text { wt of } \mathrm{CO}_{2}}{\text { wt. of org. sub }} \times 100=\frac{12}{44} \times \frac{0.147}{0.2} \times 100=20 \%$
$\% \mathrm{H}=\frac{2}{18} \times \frac{\text { wt of } \mathrm{H}_{2} \mathrm{O}}{\text { wt of org. sub }} \times 100=\frac{2}{18} \times \frac{0.12}{0.2} \times 100=6.66 \%$
$\%$ oxygen $=100-(20+6.66)=73.3 \%$

Mathematics

SINGLE CHOICE

1.(C) $f(x)=x+\sin x$

$$
\therefore \frac{d y}{d x}=1+\cos x \Rightarrow g^{\prime}(y)=\frac{d x}{d y}=\frac{1}{1+\cos x}
$$

$y=\frac{\pi}{4}+\frac{1}{\sqrt{2}}=x+\sin x \Rightarrow x=\frac{\pi}{4}$
$\therefore g^{\prime}\left(\frac{\pi}{4}+\frac{1}{\sqrt{2}}\right)=\frac{1}{1+\frac{1}{\sqrt{2}}}=\frac{\sqrt{2}}{\sqrt{2}+1}=2-\sqrt{2}$
2.(B) If l, m, n are direction cosines of two lines are such that
$l+m+n=0$
$l^{2}+m^{2}-n^{2}=0$
$\Rightarrow l^{2}+m^{2}-(-l-m)^{2}=0$
$\Rightarrow 2 l m=0 \Rightarrow l=0$ or $m=0$
If $l=0$, then $n=-m$
$\Rightarrow l: m: n=0: 1:-1$
and if $m=0$, then $n=-l$
$\Rightarrow l: m: m=1: 0:-1$
$\therefore \cos \theta=\frac{0+0+1}{\sqrt{0+1+1} \sqrt{0+1+1}}=\frac{1}{2}$
$\Rightarrow \theta=\frac{\pi}{3}$
3.(B) Let $I=\int \frac{(1+x)}{x\left(1+x e^{x}\right)^{2}} d x=\int \frac{(1+x) e^{x}}{\left(x e^{x}\right)\left(1+x e^{x}\right)^{2}} d x$,

Put $1+x e^{x}=t$
$\therefore(1+x) e^{x} d x=d t=\int \frac{d t}{(t-1) \cdot t^{2}}$, applying partial fraction
We get, $\frac{1}{(t-1) t^{2}}=\frac{A}{t-1}+\frac{B}{t}+\frac{C}{t^{2}}$
$\Rightarrow \quad 1=A\left(t^{2}\right)+B t(t-1)+C(t-1)$
For $t=1 \Rightarrow A=1$
For $t=0 \Rightarrow C=-1$ and $B=-1$
$\therefore I=\int\left\{\frac{1}{t-1}-\frac{1}{t}-\frac{1}{t^{2}}\right\} d t=\log |t-1|-\log |t|+\frac{1}{t}+C$
$=\log \left|x e^{x}\right|-\log \left|1+x e^{x}\right|+\frac{1}{1+x e^{x}}+C=\log \left|\frac{x e^{x}}{1+x e^{x}}\right|+\frac{1}{1+x e^{x}}+C$
4.(A) $\sum_{r=1}^{\infty} \frac{(4 r+5) 5^{-r}}{r(5 r+5)}=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\frac{(5 r+5)-r}{r(5 r+5)}\right) \cdot \frac{1}{5^{r}}$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\frac{1}{r}-\frac{1}{5 r+5}\right) \frac{1}{5^{r}}=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\frac{1}{r \cdot 5^{r}}-\frac{1}{(r+1) 5^{r+1}}\right)$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\frac{1}{5}-\frac{1}{(n+1) 5^{n+1}}\right)=\frac{1}{5}-0=\frac{1}{5}$
5.(A)

$\Rightarrow A P=23$
6.(D) $\quad P(F)=0.90, P(M)=0.10$
$P\left(\frac{R}{F}\right)=0.08, P\left(\frac{R}{M}\right)=0.95$
$\therefore P\left(\frac{M}{R}\right)=\frac{P(M) \cdot P\left(\frac{R}{M}\right)}{P(M) \cdot P\left(\frac{R}{M}\right)+P(F) \cdot P\left(\frac{R}{F}\right)}$
$=\frac{0.10 \times 0.95}{0.10 \times 0.95+0.90 \times 0.08}=\frac{0.095}{0.167}=\frac{95}{167}$
7.(A) Directrix : $x-3=-\frac{1}{2}, x=3-\frac{1}{2}=\frac{5}{2}$

Slope of tangent at $P(5,2): 2 y \frac{d y}{d x}=2, \frac{d y}{d x}=\frac{1}{2}$
Equation of tangent $y-2=\frac{1}{2}(x-5)$
$y-2=\frac{1}{2}\left(\frac{5}{2}-5\right)=-\frac{5}{4}, y=2-\frac{5}{4}=\frac{3}{4}$
$Q=\left(\frac{5}{2}, \frac{3}{4}\right)$ circumcentre is mid-point of P and $Q \equiv\left(\frac{5+\frac{5}{2}}{2}, \frac{2+\frac{3}{4}}{2}\right)=\left(\frac{15}{4}, \frac{11}{8}\right)$
8.(D) Here, $A B=-2 \hat{j}, B C=(a-1) \hat{i}+(b+1) \hat{j}+c \hat{k}$

The points are collinear, then $A B=k(B C)$
$-2 \hat{j}=k\{(a-1) \hat{i}+(b+1) \hat{j}+c \hat{k}\}$
On comparing, $k(a-1)=0, k(b+1)=-2, k c=0$
Hence, $c=0, a=1$ and b is arbitrary scalar.
9.(B) Let $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}=\lambda, x=2 \lambda+1, y=3 \lambda-1, z=4 \lambda+1$ lies on $2^{\text {nd }}$ line $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$
$\frac{2 \lambda+1-3}{1}=\frac{3 \lambda-1-k}{2}=\frac{4 \lambda+1}{1}$, so $2 \lambda-2=4 \lambda+1,2 \lambda=-3 \Rightarrow \lambda=-\frac{3}{2}$
$\alpha=-2, \beta=-\frac{11}{2}, \gamma=-5, \alpha+\gamma-2 \beta=-2-5+11=4$
10.(D) Let $A=\left\{a_{1}, a_{2}, a_{3}, \ldots . ., a_{n}\right\}$

A general element of A must satisfy one of the following possibilities
[here, general element be $a_{i}(1 \leq i \leq n)$]
(i) $a_{i} \in P, a_{i} \in Q$
(ii) $a_{i} \in P, a_{i} \notin Q$
(iii) $a_{i} \notin P, a_{i} \in Q$
(iv) $\quad a_{i} \notin P, a_{i} \notin Q$

Therefore, for one element a_{i} of A, we have four choices (i), (ii), (iii) and (iv)
Total number of cases for all element $=4^{n}$
And for one element a_{i} of A, such that $a_{i} \in P \cup Q$, we have there choices (i), (ii) and (iii)
Number of cases for all elements belong to $P \cup Q=3^{n}$
Here, number of ways in which atleast one element of A does not belong to
$P \cup Q=4^{n}-3^{n}$
11.(C) $(1+x)^{101}\left(1-x+x^{2}\right)^{100}=(1+x)\left((1+x)\left(1-x+x^{2}\right)\right)^{100}$
$=(1+x)\left(1+x^{3}\right)^{100}=(1+x)\left(1+{ }^{100} C_{1} x^{3}+{ }^{100} C_{2} x^{6}+{ }^{100} C_{3} x^{9}+\ldots+\ldots+{ }^{100} C_{10} x^{300}\right)$
Clearly, in this expression x^{3} will present if $n=3 \lambda$ or $n=3 \lambda+1$. So, n cannot be of the form $3 \lambda+2$.
12.(B) Let $\mathrm{P}=$ Number of ways, 12 boys and 2 girls are seated in a row
$=14!=14 \times 13 \times 12!=182 \times 12$!
$P_{1}=$ Number of ways, the girls can sit together
$=(14-2+1) \times 2!\times 12!=26 \times 12!$
$P_{2}=$ Number of ways, one boy sits between the girls
$=(14-3+1) \times 2!\times 12!=24 \times 12!$
$P_{3}=$ Number of ways, two boys sit between the girls
$=(14-4+1) \times 2!\times 12!=22 \times 12!$
\therefore Required number of ways $=(182-26-24-22) \times 12$!
$=110 \times 12!=\lambda \times 12$!
$\lambda=110$
13.(C) There are 6 letters I, I, E, E, T, J

The following cases arise
Case I : All letters are different
${ }^{4} P_{4}=4!=24$
Case II : Two alike and two different
${ }^{2} C_{1} \times{ }^{3} C_{2} \times \frac{4!}{2!}=72$
Case III : Two alike of one kind and two alike of another kind
${ }^{2} C_{2} \times \frac{4!}{2!2!}=6$
Hence, number of words $=24+72+6=102$
14.(B) Here, $\lim _{x \rightarrow 0} \frac{\log _{e}\left[\cot \left(\frac{\pi}{4}-K_{1} x\right)\right]}{\tan K_{2} x}=1$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\log \left[\cot \left(\frac{\pi}{4}-K_{1} x\right)-1+1\right]}{\tan K_{2} x}=1$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\log \left(1+\frac{2 \tan K_{1} x}{1-\tan K_{1} x}\right)}{\tan K_{2} x}=1$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\log \left(1+\frac{2 \tan K_{1} x}{1-\tan K_{1} x}\right)}{\frac{2 \tan K_{1} x}{1-\tan K_{1} x}} \cdot \frac{\frac{2 \tan K_{1} x}{1-\tan K_{1} x}}{\tan K_{2} x}=1$
15.(A) $\alpha+\beta=-\frac{b}{a} \& \alpha \beta=\frac{c}{a}$
$\therefore A_{n+2}=\alpha^{n+2}+\beta^{n+2}$
$=(\alpha+\beta)\left(\alpha^{n+1}+\beta^{n+1}\right)-\alpha \beta^{n+1}-\beta \alpha^{n+1}$
$=(\alpha+\beta)\left(\alpha^{n+1}+\beta^{n+1}\right)-\alpha \beta\left(\alpha^{n}+\beta^{n}\right)=\frac{b}{a} A_{n+1}-\frac{c}{a} A_{n}$
$\Rightarrow a A_{n+2}+b A_{n+1}+c A_{n}=0$
16.(B) $2 x-3>0 \cap x^{2}-5 x-6>0 \cap 2 x-3 \neq 1$
$x>\frac{3}{2} \cap(x-6)(x+1)>0 \cap x \neq 2$
$\Rightarrow \quad(6, \infty)$
17.(A) We have, $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$
$\Rightarrow|A|=1(1+2)-2(-1-4)-1(1-2)=3+10+1=14$
We know that, for a square matrix of order n,
$\operatorname{adj}(\operatorname{adj} \mathrm{A})=|A|^{n-2} A$, if $|A| \neq 0$
$\Rightarrow \quad \operatorname{det}(\operatorname{adj}(\operatorname{adj} A))=\left||A|^{n-2} A\right| \quad \Rightarrow \quad \operatorname{det}(\operatorname{adj}(\operatorname{adj} A))=\left(|A|^{n-2}\right)^{n}|A|$
$\Rightarrow \quad \operatorname{det}(\operatorname{adj}(\operatorname{adj} A))=|A|^{n^{2}-2 n+1}$
Here, $n=3 \&|A|=14$
Therefore, $\operatorname{det}(\operatorname{adj}(\operatorname{adj} A))=(14)^{3^{2}-2 \times 3+1}=14^{4}$
18.(D) Area bounded by both curves

$$
\begin{aligned}
& =\int_{0}^{\frac{a}{1+a^{2}}}\left(x-a x^{2}\right)-\left(\frac{x^{2}}{a}\right) d x \\
& =\int_{0}^{\frac{a}{1+a^{2}}} x d x-\frac{a^{2}+1^{1}}{a} \int_{0}^{\frac{a}{1+a^{2}}} x^{2} d x \\
& \left.\left.=\frac{x^{2}}{2}\right]_{0}^{\frac{a}{1+a^{2}}}-\frac{a^{2}+1}{a} \cdot \frac{x^{3}}{3}\right]_{0}^{\frac{a}{1+a^{2}}} \\
& =\frac{a^{2}}{2\left(1+a^{2}\right)^{2}}-\frac{a^{2}}{3\left(1+a^{2}\right)^{2}} \\
& =\frac{a^{2}}{6\left(1+a^{2}\right)^{2}}=\frac{1}{6\left(a+\frac{1}{a}\right)^{2}}
\end{aligned}
$$

Area will be maximum when $a=1$
19.(B) If $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right), P=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right), Q=P^{T} A P$, we have
$P Q^{2014} P^{T}=\frac{P\left(P^{T} A P\right)\left(P^{T} A P\right) \ldots .\left(P^{T} A P\right) P^{T}}{2014 \text { times }}$
$\left(P P^{T}\right) A\left(P P^{T}\right) A\left(P P^{T}\right) \ldots\left(P P^{T}\right) A\left(P P^{T}\right)$
Matrix multiplication is associative
$P P^{T}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I_{2}$
Hence, $P Q^{2014} P^{T}=A^{2014}$
$A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) \Rightarrow A^{2}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$
$A^{3}=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 6 \\ 0 & 1\end{array}\right)$
$A^{4}=\left(\begin{array}{ll}1 & 6 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 8 \\ 0 & 1\end{array}\right) \quad \Rightarrow A^{n}=\left(\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right) \& A^{2014}=\left(\begin{array}{cc}1 & 4028 \\ 0 & 1\end{array}\right)$
20.(D) $\mathrm{AD}: x+3 y+18=0$

BE : $x+2 y+10=0$
on solving we get circumcenter $\equiv(6,-8)$
$\alpha=6, \beta=-8$
$(\alpha+\beta)^{2}+\alpha-\beta=18$

$(-2,-2) \quad y=3 x+4$

NUMERICAL TYPE

1.(7) Consider the function $f(x)=\frac{x^{2}}{x^{3}+200}$
$f^{\prime}(x)=x \frac{\left(400-x^{3}\right)}{\left(x^{3}+200\right)^{2}}=0$
$\Rightarrow x^{3}=400 \Rightarrow x=(400)^{1 / 3}$
When $x<0, f^{\prime}(x)>0$
Therefore, $f(x)$ has maximum at $x=(400)^{1 / 3}$ since, $7<(400)^{1 / 3}<8$, either a_{7} or a_{8} is the greatest term of the sequence
$\because a_{7}=\frac{49}{543}, a_{8}=\frac{8}{89}$ and $\frac{49}{543}>\frac{8}{89}$
$a_{7}=\frac{49}{543}$ is the greatest.
2.(1) $y(1+x y) d x-x d y=0 \Rightarrow \frac{d y}{d x}=\frac{y(1+x y)}{x} \Rightarrow x d y-y d x=x y^{2} d x$
$\Rightarrow \frac{x d y-y d x}{y^{2}}=x d x \Rightarrow \int-d\left(\frac{x}{y}\right)=\int x d x \Rightarrow-\frac{x}{y}=\frac{x^{2}}{2}+C$
$x=4, y=2$
$-\frac{4}{2}=\frac{4^{2}}{2}+C$
$-2=8+C$
$C=-10$
$-\frac{x}{y}=\frac{x^{2}}{2}-10 \Rightarrow \frac{x}{y}=\frac{20-x^{2}}{2} \Rightarrow y=\frac{2 x}{20-x^{2}}$
$f(2)=\frac{4}{16}=\frac{1}{4}$
3.(425) Using the property that equal chords subtends equal angles at centre of circle, then problem can be converted to the diagram in adjoining figure
$\mathrm{AB}=4, \mathrm{AC}=2, \mathrm{BC}=3$
$\angle A B C=\alpha / 2$
$\cos (\alpha / 2)=\frac{9+16-4}{2 \times 3 \times 4}=\frac{7}{8} \Rightarrow \cos \alpha=2 \cos ^{2}(\alpha / 2)-1$
$=2 \times \frac{49}{64}-1=\frac{98-64}{64} \Rightarrow \cos \alpha=\frac{34}{64}=\frac{17}{32}$

4.(4) Since $f(x)$ and $g(x)$ are one-one and onto and are also the mirror images of each other with respect to the line $y=2$. It clearly indicates that $h(x)=f(x)+g(x)$ will be a constant function and will always be equal to 4 .
5.(0) Since, these two lines are intersecting so shortest distance between these two lines will be 0 .
6.(16) $\left[\frac{70}{5}\right]+\left[\frac{70}{25}\right]=14+2=16$
7.(9) $\quad \sigma^{2}=\frac{20 \times 1+40 \times 2^{2}}{60}=3$ (Because mean of both samples is the same)
8.(6) \quad Let $\sqrt[3]{x^{2}+2 x}=y=f(x)$
$x=-1+\left(y^{3}+1\right)^{1 / 2}$
$I=\int_{0}^{2}\left(f^{-1}(x)+f(x)+1\right) d x$
Consider $\int_{0}^{2} f^{-1}(x)=\int_{0}^{2} t f^{\prime}(t) d t$
Let $f^{-1}(x)=t ; x=f(t) ; d x=f^{\prime}(t) d t=\left.t f(t)\right|_{0} ^{2}-\int_{0}^{2} d x=6$
9.(2) $|\vec{a}+\vec{b}|=\sqrt{3} \quad \Rightarrow \quad$ Squaring both sides

$$
\begin{aligned}
\Rightarrow & \vec{a} \cdot \vec{b}=\frac{1}{2} ; \quad \vec{c}=\vec{a}+2 \vec{b}-3 \vec{a} \times \vec{b} \\
\Rightarrow & \vec{a} \cdot \vec{c}=2 \& \vec{b} \cdot \vec{c}=\frac{5}{2} \\
& p=|(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}| \\
& p=\sqrt{\left|2 \vec{b}-\frac{5}{2} \vec{a}\right|^{2}} \\
& p=\frac{\sqrt{21}}{2} \Rightarrow[p]=2
\end{aligned}
$$

10.(4) $\quad\left(3^{|x-2|}+\left(3^{|x-2|-9}\right)^{1 / 5}\right)^{7}$
$T_{6}={ }^{7} C_{5} \cdot\left(3^{|x-2|}\right)^{2} \cdot 3^{|x-2|-9}=567 \quad \Rightarrow 3^{3|x-2|-9}=27 \Rightarrow|x-2|=4 \Rightarrow x=6,-2$

