

Lifeling of NEET Aspirants

SAMPLE PAPERS

FOR STUDENTS CURRENTLY IN CLASS

1 Year Course NEET

Sample Paper

1 Year (Medical)

Duration: 2.5 Hrs Maximum Marks: 320

For Students Presently in Class 11th (Stream: Medical)

PAPER SCHEME:

- The paper contains 80 Objective Type Questions divided into three sections: Section I (Physics), Section II (Chemistry) and Section III (Biology).
- Section I and II contain 20 Multiple Choice Questions each and Section III contains 40 questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

MARKING SCHEME:

• For each question in Section-I, II and III, **4 marks** will be awarded for correct answer and **-1 negative** marking for incorrect answer.

SUGGESTIONS:

- Before starting the paper, spend 2-3 minutes to check whether all the pages are in order and report any issue to the invigilator immediately.
- Try to attempt the Sections in their respective order.
- Do not get stuck on a particular question for more than 1-1.5 minutes. Move on to a new question as there are 80 questions to solve.

				SECTIO	N – I [PH	YSICS]		
1.	Suppo	ose the kinetic	energy o	of a body os	scillating wi	th amplitude	e A and at	t a distance x is given by
	$K = \frac{1}{2}$	$\frac{Bx}{x^2 + A^2}$. The di	mensions	s of B are the	same as tha	t of:		
	(A)	work/time	(B)	work × dis	stance (C)	work/dista	nce (D)	work × time
2.		experiment measure are $\pm 1\%, \pm 3\%$	_					If the percentage errors is:
	(A)	$\pm 13\%$	(B)	± 7%	(C)	± 4%	(D)	±1%
3.	A blo	ck is initially at	rest. The	friction force	e acting on			

- (A) $\frac{4k}{3}$ (B) $\frac{2k}{3}$ (C) $\frac{k}{3}$ (D) $\frac{5k}{3}$
- 5. The adjacent sides of a parallelogram is represented by vectors $2\hat{i} + 3\hat{j}$ and $\hat{i} + 4\hat{j}$. The area of the parallelogram is:
- (A) 5 units (B) 3 units (C) 8 units (D) 11 units
- 6. A body is released from the top of a tower of height *H* metre. After 2 seconds it is stopped and then instantaneously released. What will be its height after next 2 seconds?
- (A) (H-5) metre (B) (H-10) metre (C) (H-20) metre (D) (H-40) metre
- 7. A metal ball falls from a height of 32 metre on a steel plate. If the coefficient of restitution is 0.5, to what height will the ball rise after second bounce?
- **(A)** 2m **(B)** 4m **(C)** 8m **(D)** 16m
- 8. A ball of mass m_1 makes a head on elastic collision with a ball of mass m_2 which is initially at rest. The transfer of kinetic energy to the second ball is maximum when:
 - (A) $m_1 >> m_2$ (B) $m_1 = m_2$ (C) $m_1 << m_2$ (D) $m_1 \stackrel{\leq}{>} m_2$
- 9. If θ be the angle between two vectors P and Q , then $P \cdot (Q \times P)$ is equal to:
- (A) zero (B) $P^2Q\cos\theta$ (C) $PQ^2\sin\theta$ (D) PQ^2
- 10. The displacement-time graph for two bodies P and Q are straight lines inclined at angles of 30° and 60° with the time-axis. Then the ratio of their velocities is respectively equal to:
 - **(A)** $1:\sqrt{3}$ **(B)** 1:2 **(C)** $\sqrt{3}:1$ **(D)** 1:3

- 11. A car accelerates from rest at a constant rate 'A' for some time, after which it decelerates at a constant rate 'B' and comes to rest. If the total time elapsed is T, then the maximum velocity acquired by the car is:
 - (A) $\left(\frac{A^2 + B^2}{AB}\right)$ (B) $\left(\frac{A^2 B^2}{AB}\right)T$ (C) $\left(\frac{A + B}{AB}\right)T$ (D) $\frac{ABT}{A + B}$

- The time (t) is expressed as a function of distance (x) as, $t = \alpha x^2 + \beta x$, where α and β are constants. Then 12. the retardation is given by:
 - $2\alpha\beta v^2$ **(A)**
- **(B)**
- $2\beta v^3$ **(C)**
- **(D)** None of these
- A stone is dropped into a well in which the level of water is H below the top of the well. If u is velocity of 13. sound, the time t after which the splash is heard is given by:
- **(B)** $t = \sqrt{\frac{2H}{g}} + \frac{H}{u}$ **(C)** $t = \sqrt{\frac{2H}{u}} + \frac{H}{\sigma}$ **(D)** None of these
- The displacement (x) versus time (t) graph of a moving particle is shown below. The instantaneous velocity 14. of the particle is negative at the point.

- 0 **(B)**
- R
- S **(D)**
- 15. Three forces acting on a body are shown in figure. To have the resultant force only along the y-direction, the magnitude of the minimum additional force needed is:

- - $\frac{\sqrt{3}}{4}$ N (B) $\sqrt{3}$ N
- 0.5 N **(C)**
- 1.5 N **(D)**
- A particle of mass 4 m at rest explodes into three fragments. Two of the fragments each of mass m each 16. move with speed v at right angles to each other. The kinetic energy released in the process is:
 - **(A)**
- **(B)** $\frac{3}{2}mv^2$ **(C)** $\frac{1}{2}mv^2$ **(D)** $3mv^2$
- An object of mass 3 kg is at rest. Now a force of $F = 6t^2\hat{i} + 4t\hat{j}$ is applied on the object then velocity of 17. object at t = 3 sec. is:
 - $18\hat{i} + 3\hat{i}$ (A)

- **(B)** $18\hat{i} + 6\hat{j}$ **(C)** $3\hat{i} + 18\hat{j}$ **(D)** $18\hat{i} + 4\hat{j}$
- A rod of length '2m' and mass 0.5 kg is pivoted at one end as shown in figure. The increase in potential 18. energy when $\theta = 60^{\circ}$ is: $(g = 10 \text{ m/s}^2)$

- **(A)** 1.25 J
- **(B)** 2.5 J
- **(C)** 5 J
- **(D)** 10 J

- **19.** $x^2 + y^2 = 5$ is an equation of:
 - (A) A straight line (B)
- A circle
- (C) A parabola
- **(D)** An ellipse

- **20.** Slope of the line represented by y=3x+4 is:
 - **(A)**
- **(B)** -3
- **(C)**
- **(D)** -4

SECTION – II [CHEMISTRY]

21. Ce (58) is a member of:

3

- (A) s-block
- **(B)** *p*-block
- **(C)** *d*-block
- **(D)** *f*-block

- **22.** Which of these exists in liquid at room temperature?
 - (A) Br₂
- **(B)** O₂
- (C) Cl₂
- **(D)** O₃

- **23.** Which of these is linear?
 - (A) ICl₃
- **(B)** I_3^-
- (C) ICl_5
- **(D)** SF₆
- **24.** Which of the following shows geometrical isomerism?
 - (A) 1–Butene
- **(B)** 2–Butene
- (C) Propene
- **(D)** 1–Pentene

- **25.** Electron affinity is numerically the greatest for:
 - **(A)** O
- **(B)** C1
- (C) F
- **(D)** Na

- **26.** Out of the following which is correct?
 - (A) Molecular orbitals are more stable than atomic orbitals
 - (B) Molecular orbitals have different shape than atomic orbitals
 - (C) Electron cloud extends all around the nuclei of bonded atoms in the molecules
 - (D) All are correct
- 27. 2-ethenyl-3-methyl-cyclohexa-1,3-diene will be:

(C)

(D)

28. The correct IUPAC name of

- (A) 1-(2-cyclohexanone-enyl)-2-butanone
- **(B)** 1-(2-oxobutyl)-cyclohexanone
- (C) 1-(2-cyclohex-2-one-1-enyl)butanone
- **(D)** 2-(3-oxobutyl)-cyclohexanone

- **29.** One fermi is:
 - (A) $10^{-13} cm$
- **(B)** $10^{-15} cm$
- (C) $10^{-10} cm$
- **(D)** $10^{-12} cm$

- **30.** A picometre is written as:
 - **(A)** $10^{-9} m$
- **(B)** $10^{-10} m$
- (C) $10^{-11} m$
- **(D)** $10^{-12} m$

- **31.** One atmosphere is equal to:
 - (A) 101.325 K pa (B)
 - 3) 1013.25 *K pa*
- (C) $10^5 Nm$
- **(D)** None of these

(D)

1 Yea	ir (ivieai	cai) Sample Pa	aper					5
32.		olet colour obta mation of:	ined witl	n sodium nitropri	usside in	the test of sulph	ur in org	anic compounds is due to
	(A)	Na ₃ [Fe(CN) ₆]		(B)	Na ₄ [Fe(CN) ₅ N	NOS]	
	(C)	Na ₂ [Fe(CN) ₅	S]		(D)	Na ₄ [Fe(CN) ₆]		
33.	Which	one of the follo	wing co	mpounds is the r	nost acid	lic?		
	(A)	$HO-CH_2-C$	СООН		(B)	O_2N-CH_2-	СООН	
	(C)	$Cl-CH_2-CO$	ООН		(D)	$NC - CH_2 - C$	ООН	
34.	Accor	ding to the Hucl	cel's rule	e, which of the fo	llowing	species will be a	romatic'	?
	(I)	\bigoplus	(II)	$\bigcirc\!$	(III)		(IV)	
	(A)	(I)	(B)	(II)	(C)	(III)	(D)	(IV)
35.	The po	otential energy o	of the e	present in the gr	ound star	te in Li ⁺² is repr	esented	by the expression:
	(A)	$\frac{+3e^2}{4\pi\epsilon_0 r}$	(B)	$\frac{-3e}{4\pi\epsilon_0 r}$	(C)	$\frac{-3e^2}{4\pi\epsilon_0 r^2}$	(D)	$\frac{-3e^2}{4\pi\epsilon_0 r}$
	(A)	$4\pi\epsilon_0 r$	(B)	${4\pi\epsilon_0 r}$	(C)	$4\pi\epsilon_0 r^2$	(D)	$4\pi\epsilon_0 r$
36.	Identif	fy the species no	ot capable	e of acting as an	electropl	nile:		
	(A)	BCl ₃	(B)	AlCl ₃	(C)	NH_4^+	(D)	CO_2
37.	Which	of the followin	g substa	nces <mark>has</mark> the high	est melti	ng point?		
	(A)	NaCl	(B)	KC1	(C)	MgO	(D)	BaO
38.				ture of cathode r	ays?			
	(A)	These do not t						
	(B)			mentum to anoth	•	with the well editor	afliaht	
	(C) (D)	All of these ar	_	etic rays and pro	pagate w	vitil the velocity	or ngm	
39.	` ′			ot contain any co	ordinate	bond?		
	(A)	H_3O^+	(B)	$\mathrm{BF_{\!\scriptscriptstyle A}}^-$	(C)	$\mathrm{HF_2}^-$	(D)	$\mathrm{NH_4}^+$
40.		3	. ,	omic molecules/i	. ,	-		7
	(A)	N_2^+ , NO, O_2^+	(B)	O_2^+ , NO, CN^-	(C)	N_2^+, CN^-, O_2^+	(D)	CN^{-}, N_{2}^{+}, N_{2}
				SECTION –	III [BIC	DLOGY]		
41.	House	flies are include	d in fam		-	•		
	(A)	Musca	(B)	Muscidae	(C)	Diptera	(D)	Insecta
42.		statement corre	` ,	resents kingdom		_	` /	
	(A)	Its boundaries	s are not	well defined				
	(B)	It includes bo	th unice	llular eukaryotes	and prol	karyotes		
	(C)	All members	of this k	ingdom are of ar	nimal in 1	nature		

This kingdom does not include saprophytes

43.	Which	n of the following	g represe	ent first vascular	cryptog	amae?		
	(A)	Pteridophytes	(B)	Angiosperms	(C)	Gymnosperms	(D)	Bryophyte
44.	Tap ro	oot system in dicc	ots deve	lops from of emb	oryo:			
	(A)	plumule	(B)	radicle	(C)	epicotyl	(D)	hypocotyl
45.	Which	of the following	group	of organisms can	be pres	sent in deep sea w	ater?	
	(A)	Eubacteria			(B)	Blue-green alg	gae	
	(C)	Saprophytic fo	ıngi		(D)	Red Algal		
46.	Read 1	the following stat	ements	and identify the	correct	option regarding	fungi.	
	(A)	They are autor	rophic		(B)	They lack a rig	gid cell	wall
	(C)	They are heter	otrophs	\$	(D)	They lack a nu	ıclear m	embrane
47.	Growt	th from any part of	of plant	other than radicle	e.			
	(A)	taproots			(B)	adventitious ro	ots	
	(C)	both (A) and (B)		(D)	epiphytic roots		
48.	Aerial	hanging roots pr	esent in	n a Banyan tree is				
	(A)	fibrous	(B)	re <mark>spirato</mark> ry	(C)	epiphytic	(D)	prop roots
49.	In whi	ich plant, root has	s symbi	otic relationship	with cya	anobacteria:		
	(A)	Cycas	(B)	Eq <mark>ui</mark> setum	(C)	Psilotum	(D)	Pinus
50.	Which	n of the following	g org <mark>ani</mark>	sm produce non-	motile i	sogamous gamete	es?	
	(A)	Spirogyra			(B)	Volvox		
	(C)	Fucus			(D)	Chlamydomon	as	
51.	Find t	he incorrect optic	on regar	ding cell and the	ir cell w	all degrading enz	yme:	
	(A)	Plant cells-Ce	llulase		(B)	Algae-Methyla	ase	
	(C)	Fungi-Chitina	se		(D)	Bacteria-Lyso:	zyme	
52.	Which	of the following	g plant h	nas less differenti	ated boo	dy?		
	(A)	Funaria	(B)	Sphagnum	(C)	Salvinia	(D)	Marchantia
53.	Plants	growing in swan	np areas	s have some roots	which	shows positive ge	eotropis	m. These roots are known
	as:							
	(A)	pneumatophore	es		(B)	mycorrhizal		
	(C)	pneumathodes			(D)	assimilatory		
54.	Specia	alized cells for ni	trogen f	ixation, present i	n cyano	bacteria is knowr	as:	
	(A)	Akinetes	(B)	Heterocysts	(C)	Hormogonia	(D)	Nodules
55.	Which	n of the following	g organi	sm show true Co	elom?			
	(A)	Platyhelminthe	es		(B)	Aschelminthes		
	(C)	Annelids			(D)	Coelenterates		

56.	Which	of the following	exhibit	bilateral symmet	try?			
	(A)	Jelly fish, Com	b jelly		(B)	Earthworm, Ro	ound wo	rm
	(C)	Tape worm, Sta	ar fish		(D)	Sponge, Sea ar	nemone	
57.	Which	of the following	organis	ms have flame c	ells as ex	cretory cells?		
	(A)	Platyhelminthe	S		(B)	Annelids		
	(C)	Mollusca			(D)	Arthropoda		
58.	Which	of the following	animal	is a vertebrate bu	ıt lacks j	aws?		
	(A)	Petromyzon			(B)	Dog fish		
	(C)	Seals			(D)	Snakes		
59.	Which	of the following	is a cor	rect difference be	etween c	artilaginous and	bony fi	shes?
	(A)	Bony fish have	placoid	scales, but cartil	aginous	fish do not		
	(B)	Bony fishes are	marine	but cartilaginous	s fish are	e not		
	(C)	Bony fishes have	ve separ	ate sexes but car	tilaginou	ıs fish do not		
	(D)	Bony fishes gil	ls are co	overed by opercu	lum but	g <mark>ills</mark> of cartilagi	nous fisl	n are exposed.
60.	Which	of the following	structui	re has ciliated ep	ithelia?			
	(A)	Fallopian tube	only		(B)	Bronchioles an	d fallop	ian tube
	(C)	Fallopian tube	and Bov	vman's capsule	(D)	Bowman's cap	sule onl	y
61.	Which	of the following	tissue s	tores fat?				
	(A)	Adipose tissue			(B)	Epithelial tissu	e	
	(C)	Dense regular o	connecti	ve tissue	(D)	Muscular tissu	e	
62.	Which	of the following	junction	ns prevent leakag	ge from o	one cell to anoth	er?	
	(A)	Gap Junction	(B)	Plasmodesmata	ı (C)	Tight Junction	(D)	Adhering Junction
63.	Which	of the following	muscle	s are involuntary	with cy	lindrical shape?		
	(A)	Muscles of Jaw	/S		(B)	Muscles of He	art	
	(C)	Muscles of Inte	estine		(D)	Muscles of Sho	oulder	
64.	Which	of the following	is not fi	unction of a neur	on?			
	(A)	Inhibiting anotl	her neur	on				
	(B)	Stimulating and	other ne	uron				
	(C)	Forming myeling	n sheath	on another neur	on			
	(D)	Both (A) and (C)					
65.	Which	of the following	structui	re joins bone to n	nuscle?			
	(A)	Ligament			(B)	Tendon		
	(C)	Loose connecti	ve tissu	e	(D)	Both (B) and (C)	
66.	Which	of the following	phylum	show alternation	n of gene	eration?		
	(A)	Mollusca	(B)	Echinodermata	(C)	Coelenterate	(D)	Platyhelminthes
67.	Which	of the following	is also l	known as saw fis	h?			
	(A)	Octopus	(B)	Lepisma	(C)	Trygon	(D)	Pristis
68.	Which	cell organelle is	respons	ible for packagin	g of sec	retory proteins?		
	(A)	Ribosome	(B)	Nucleus	(C)	Golgi body	(D)	Mitochondria

69.	An en	zyme is:								
	(A)	Biological catalyst			(B)	Mostly p	orotein	in natui	re	
	(C)	Mostly heat labile			(D)	All of th	ese			
70.	Gluco	se is not:								
	(A)	a monosaccharide			(B)	monome	er of Gl	ycogen		
	(C)	sweet sugar			(D)	a pentos	e			
71.	Accor	ding to Singer and Nich	nolson the	structure	of plas	sma memb	rane is:			
	(A)	Fluid			(B)	Solid				
	(C)	Quasi fluid			(D)	Liquid o	f very l	ow vis	cosity	
72.	Which	of the following is a d	ouble wall	ed struct	ture in a	an animal c	cell?			
	(A)	Mitochondria			(B)	Chlorop	last			
	(C)	Ribosome			(D)	Both (A)) and (E	B)		
73.	Which	of the following is not	a part of e	endomen	nbrane	system?				
	(A)	Lysosome			(B)	Vacuole				
	(C)	Mitochondria			(D)	Endopla	smic re	ticulum	1	
74.	Which	of the following plasti	d is a store	house c	of starcl	1?				
	(A)	Amyloplast (B)	Chrom	oplast	(C)	Aleurop	last	(D)	Elaiop	olast
75.	How 1	many peripheral double	ts are se <mark>en</mark>	in a stru	icture o	f transvers	e sectio	n of cil	ia?	
	(A)	9 (B)	13		(C)	11		(D)	18	
76.	The cl	nromosomes with one s	hort arm a	nd anoth	er sligl	ntly longer	arm are	e:		
	(A)	Metacentric			(B)	Sub-Met	acentric			
<	(C)	Acentric			(D)	Both (A)) and (E	B)		
77.	Identi	fy the correct combinati	ion:							
	(A)	Maltose: Glucose + G	Galactose		(B)	Lactose	: Gluco	se + G	ucose	
	(C)	Amylose : Galactose	+ Galactos	se	(D)	Sucrose	: Gluco	se + Fr	ructose	
78.	Identi	fy the amino–acid								
		H								
	H ₂ N-	-C-COOH								
	_	CH ₃								
	<i>(</i> , ,)	3	a :		(C)			(T)		
	(A)	Glycine (B)	Serine		(C)	Alanine	11. 0	(D)	Aspar	tic acid
79.		n of the following is cor	rect combi	nation o		•		C 11 1		
	(A)	Codeine, Abrin			(B)	Glutami			se	
00	(C)	Concavalin A, Gluco		. 1	(D)	Ricin, A	-	acid		
80.		n of the following is mo			cal in li			• 1	(D)	
	(A)	Proteins	(B)	Water		(C)	Nucleic	acids	(D)	Carbohydrates

জ্ঞ জ্ঞ জ End of Sample Paper | 1 Year (Medical) ও ও ও

Answer Key | 1 Year (Medical) | Sample Paper

PHYSICS

1	2	3	4	5	6	7	8	9	10
В	Α	D	Α	Α	D	Α	В	Α	D
11	12	13	14	15	16	17	18	19	20

CHEMISTRY

21	22	23	24	25	26	27	28	29	30
D	Α	В	В	В	D	С	D	Α	D
31	32	33	34	35	36	37	38	39	40
Α	В	В	В	D	С	С	В		Α

BIOLOGY

41	42	43	44	45	46	47	48	49	50
В	Α	Α	В	D	С	В	D	Α	Α
51	52	53	54	55	56	57	58	59	60
В	D	Α	В	С	В	Α	Α	D	В
61	62	63	64	65	66	67	68	69	70
Α	С	В	С	В	С	D	С	D	D
71	72	73	74	75	76	77	78	79	80
С	А	С	А	А	В	D	С	А	В

VMC CENTRES ACROSS INDIA

 Head Office: Aggarwal Corporate Heights, 1st Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi.
Ph.: (011) 45221191 - 92

