

National Admission Test

Vidyamandir **Intellect Quest**

VMC INternational **Incentive Test**

FOR STUDENTS CURRENTLY IN CLASS

2 YEAR PROGRAM

NEET

Highly Qualified and Experience Faculty

Personal Attention to **Every Student**

Excellent Selection Ratio

Genuine. Verifiable Results

Proven Successful Pedagogy

Best in Class Online & App Support

HEAD OFFICE: Aggarwal Corporate Heights, 3rd Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi. Ph.: (011) 45221191-93

WHY VMC?

Sample Paper - 2 Year Program

Admission & Scholarship Test | Medical

Duration: 3.0 Hrs Maximum Marks: 480

PAPER SCHEME:

- The paper contains 120 Objective Type Questions divided into four sections: Section I,
 Section II, Section III and Section IV
- Section I contains 35 Multiple Choice Questions (1-35) based on Physics. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- **Section II** contains **35 Multiple Choice Questions (36-70)** based on Chemistry. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct**.
- **Section III** contains **35 Multiple Choice Questions (71-105)** based on Biology. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct**.
- **Section IV** contains **15 Multiple Choice Questions (106-120)** based on Mental Aptitude. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct**.

MARKING SCHEME:

• **Section I, II, III and IV**: For each question, **4 marks** will be awarded for correct answer and **-1 negative marking** for incorrect answer.

GENERAL INSTRUCTIONS:

- For answering a question, an ANSWER SHEET (OMR SHEET) is provided separately. Please fill
 your Name, Roll Number, Seat ID, Date of Birth and the PAPER CODE properly in the space
 provided in the ANSWER SHEET. IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET
 CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

PART - I (PHYSICS)

1.	If the an is	gle of incidence	of a ligh	nt ray on a plane	mirror is	40° , the angle b	etween	incident and reflected ray
	(A)	50^{0}	(B)	100^{0}	(C)	80^{0}	(D)	90^{0}
2.	The hundue to:	nan eye can focu	s objects	s at different dist	ances by	adjusting the fo	ocal leng	th of the eye lens. This is
	(A)	presbyopia			(B)	accommodatio	n	
	(C)	near-sightedne	SS		(D)	far-sightedness	S	
3.	Which c	of the following c	orrectly	describes the ma	agnetic f	ield near a long	current o	carrying straight wire?
	(A)	The field consi	ists of st	raight lines perpe	endicular	r to the wire.		
	(B)	The field consi	ists of st	raight lines paral	lel to the	e wire.		
	(C)	The field consi	ists of ra	dial lines origina	ting from	m the wire.		
	(D)	The field consi	ists of co	oncentric circles	centred o	on the wire.	24	
4.	At the ti	me of short circu	it, the c	urrent in the circ	uit:	and		
	(A)	reduces substa	ntially		(B)	does not change	je ₁₉₈₆	
	(C)	increases heav	ily	vid	(D)	varies continuo	ously	
5.	The leas	t distance of dist	inct visi	on for a young ac	dult with	normal vision i	s	
	(A)	2.5 m	(B)	2.5 cm	(C)	25 m	(D)	25 cm
6.	Wind en	ergy farms can b	e establ	ished only at the	places v	where wind speed	d is high	er than
	(A)	2 km/hr	(B)	7 km/hr	(C)	10 km/hr	(D)	15 km/hr
7.	In a nuc	lear power plant,	uraniun	n atoms				
	(A)	combine and g	ive off h	neat energy	(B)	split and give of	off heat	energy
	(C)	burn and give	off heat	energy	(D)	split and give of	off electi	rons
8.	Solar ce	ll converts sun li	ght ener	gy into				
	(A)	heat energy	(B)	electrical energ	<u>y</u>			
	(C)	potential energ	y (D)	kinetic energy				
9.	The dev	ice used for prod	lucing el	ectric current is	called a:			
	(A)	generator	(B)	galvanometer	(C)	ammeter	(D)	motor
10.	Resistiv	ity of a wire depe	ends upo	on:				
	(A)	its length	(B)	its cross-sectio	n area			
	(C)	its dimensions	(D)	its material				
11.	The elec	trical power con	sumptio	n when a 220 Ω	light lam	np is connected a	across 22	20V:
	(A)	48400 watt	(B)	220 watt	(C)	1 watt	(D)	22 watt

(D)

between the optical centre of the lens and its principal focus

22.	A spher	rical mirror and	a thin spl	herical le	ens each	have a f	ocal length of	-15 cm. Tl	he mirror and the lens ar	e
	likely to	be:								
	(A)	both concave	;	(B)	both o	convex				
	(C)	the mirror is	concave a	and the l	ens is co	onvex				
	(D)	the mirror is	convex, b	out the le	ens is co	ncave				
23.	Which o	of the following	lenses w	ould you	u prefer	to use wl	nile reading sr	nall letters	found in a dictionary?	
	(A)	A convex len	s of foca	llength	50 cm					
	(B)	A concave le	ns of the	focal ler	ngth 50 d	cm				
	(C)	A convex len	s of foca	l length	5 cm					
	(D)	A concave le	ns of foc	al length	5 cm					
24.	The hur	nan eye forms t	he image	of an ob	ject at i	ts				
	(A)	cornea	(B)	iris		(C)	pupil	(D)	retina	
25.	The nea	ar point of a h	ypermeti	ropic ey	e is 1m	. The po	ower of the	ens require	ed to correct this defec	et
	is(assun	ne that the near	point of	the norm	al eye is	s 25 cm)		Q//		
	(A)	+ 4D	(B)	+3D		(C)	+2D	(D) ₈₆	-2D	
26.	For esta	blishing a 1 MV	W genera	tor using	g wind en	nergy the	land required	will be ab	out:	
	(A)	0.5 hectare	(B)	6 hect	are	(C) S	2 hectare	(D)	4 hectare	
27.	In bioga	as, which gas is	present in	n maxim	um amo	ount?	UNDA			
	(A)	Carbon dioxi	de (B)	Metha	ne	(C)	2 hectare Hydrogen lengths and e	(D)	Oxygen	
28.	Two con	nducting wires	of the sai	ne mate	rial and	of equal	lengths and e	qual diamet	ters are first connected i	n
						_	_	_	ratio of heat produced i	
	series an	nd parallel com	binations	would b	e					
	(A)	1:2	(B)	2:1		(C)	1:4	(D)	4:1	
29.	A ray of	f light travelling	g from a r	arer med	lium to a	a denser:	medium			
	(A)	slows down a	and bends	stoward	s the nor	mal				
	(B)	slows down a	and bends	s away fi	rom the	normal				
	(C)	speeds up and	d bends to	owards t	he norm	al				
	(D)	speeds up an	d bends a	way fro	m the no	rmal				
30.	If we sh	aut one eye and	the other	remains	open:					
	(A)	the world loo	ks three	dimensio	onal	(B)	the world lo	oks two dii	mensional	
	(C)	the world loo	ks one di	mension	nal	(D)	there is no v	vision		
31.	The cha	inge in focal len	gth of an	eye lens	s is caus	ed by the	action of the			
	(A)	pupil	(B)	retina		(C)	ciliary muso	eles (D)	iris	
32.	Magnet	ic field is a quar	ntity that	has						
	(A)	only direction	n		(B)	only n	nagnitude			
	(C)	both direction	n and ma	gnitude	(D)	neithe	r direction no	magnitude		

- If a person wants to use concave mirror for shaving, he should keep his face: 33.
 - (A) at the centre of curvature
 - **(B)** at the focus
 - between centre of curvature and focus **(C)**
 - **(D)** between pole and focus
- 34. The resistance of a conductor does not depend on:
 - material of the conductor **(B)** length of the conductor **(A)**
 - **(C)** area of cross-section of the conductor shape of cross-section of the conductor **(D)**
- In a nuclear fusion reaction 35.
 - (A) A heavy nucleus is broken into two lighter nuclei
 - **(B)** Mass of the product is little more than the sum of the masses of the original individual nuclei
 - **(C)** Two lighter nuclei join to make a heavier nucleus and the mass of the product is little more than the sum of the masses of the original individual nuclei
 - Two lighter nuclei join to make a heavier nucleus and the mass of the product is little less than **(D)** the sum of the masses of the original individual nuclei

36.	Which of these can be most appropriately categorized as a displacement reaction?
	(A) $H_2S(g) + NaOH(l) \rightarrow NaSH(s) + H_2O(l)$
	(B) $2Cu(NO_3)_2 \xrightarrow{\Delta} 2CuO + 4NO_2 + O_2$
	(C) $C_{V}(x) + 2A_{C}N(x) + C_{V}(N(x)) + (N_{V} + 2A_{C}(x))$

(A)
$$H_2S(g) + NaOH(1) \rightarrow NaSH(s) + H_2O(1)$$

(B)
$$2Cu(NO_3)_2 \xrightarrow{\Delta} 2CuO + 4NO_2 + O_2$$

(C)
$$Cu(s) + 2AgNO_3(1) \rightarrow Cu(NO_3), (1) + 2Ag(s)$$

(D)
$$CaCO_2(s) \rightarrow CaO(s) + CO_2(g)$$

Which of these is correctly regarded as a Strong acid? 37.

- HC1 **(B)** HNO₃ **(C)** H_2SO_4 **(D)** All of these (A)
- Which of these is correct regarding bases? 38.
 - A Base having pH 8 is stronger than one having pH 7.5 **(A)**
 - **(B)** A base is recognized by its ability to donate H⁺ ions.
 - **(C)** Bases can turn blue litmus to red.
 - **(D)** Methanol (CH₃OH) is a base because it has the ability to donate hydroxyl ions freely.
- 39. Which of these oxides is an acidic oxide?
 - K₂O **(A)** SO₂**(B)** BaO **(C) (D)** BeO
- 40. Which of these have only covalent bonding between atoms?
 - **(A)** Diamond **(B)** KNO₃ **(C)** BaCl₂ **(D)** Na₂SO₄
- 41. Roasting is a process defined as,
 - Heating a substance in excess of air to remove impurities below its melting point. (A)
 - **(B)** Heating a substance in absence of air to form its oxide
 - **(C)** Heating a substance in excess of an inert gas to form its oxide
 - **(D)** Heating a substance in absence of N₂ to form its oxide

42.														
	(A)	Corrosion of co	opper is	characteristicall	y seen ir	n moist air								
	(B)	Corrosion resul	lts in for	rmation of a hyd	rated for	m of copper ox	ide							
	(C)	Corrosion of co	opper re	sults in formatio	n of basi	ic copper carbo	nate							
	(D)	Copper does no	ot corroc	le in air										
43.	Which o	of these is the corn	rect gen	eral formula of a	alkynes?									
	(A)	C_nH_{2n+1}	(B)	C_nH_{2n}	(C)	C_nH_{2n-2}	(D)	C_nH_{2n+2}						
44.	Which o	of the following is	s the cor	rect structure for	r 3-penta	anol?								
	(A)	CH ₃ CH ₂ CH ₂ C	CH ₂ CH ₂	2OH	(B)	CH ₃ CH ₂ CH ₂	CH ₂ CHC)						
	(C)	ОН			(D)	ОН								
	` /	CH ₃ CHCH ₂ C	H_2CH_3		,	CH ₃ CH ₂ CH	CH ₂ CH ₃							
45.	Which is	s true regarding t	he long	form of the perio	odic tabl	e?								
	(A)	(A) There are 18 periods of elements.												
	(B)													
	(C)	(C) The number of valence electrons decrease on going left to right in a period												
	(D)													
46.	Which o	ch of these elements is gaseous at room temperature? I ₂ (B) F ₂ (C) S (D) P ₄												
	(A)	I_2	(B)	F ₂	(C)	SNDA	(D)	P_4						
47.	Aqueous	s solution of which	ch of the	ese salts will be l	oasic?									
	(A)	NaNO ₃	(B)	CH ₃ COONa	(C)	$Al(NO_3)_3$	(D)	KC1						
48.	Which o	of these groups of	elemen	ts exhibits diago	nal relat	ionship?								
	(A)	Ba & Al	(B)	Li & Mg	(C)	P & Si	(D)	S & Cl						
49.	Which o	of these is true reg	garding o	ethyne?										
	(A)	It can be prepar	red by tı	reating calcium of	carbide v	vith water								
	(B)	It can be prepar	red by tı	reating sodium a	cetate w	ith soda-lime at	t 360°C							
	(C)	It can be prepar	red by ta	reating ethanol v	vith cond	centrated H ₂ SO ₂	at 170°C							
	(D)	It can be prepar	red by a	ll of the three m	ethods g	iven above.								
50.	For elect	trolytic refining o	of silver,	, the cathode is r	nade fro	m								
	(A)	Pure silver rod	(B)	Impure silver	rod									
	(C)	Pure gold Rod	` ′	Impure platinu										
51.		arium carbonate i		-	-									
	(A)	CO	(B)	CO_2	(C)	O_2	(D)	HC1						
52.	What wo	ould be the correc	et I.U.P.	A.C. name of 1,	1,1-Trim	ethylethane?								
	(A)	2-Methylpentar	ne		(B)	2, 2-Dimethy	lpropane							
	(C)	2, 3-Dimethylp	ronane		(D)	2, 4-Dimethy	lpentane							

- 53. Esters when treated with acidified water give,
 - **(A)** Alkanes
- **(B)** Carboxylic Acids
- **(C)** Ketones
- **(D)** Aldehydes
- 54. Which of the following compound contains aldehydic group?
 - **(A)** CH₃CHO
- $H_2N C CH_2CH_3$ **(B)**
- CH₃COOCH₃
- 55. Cleaning action of soap and detergents is due to:
 - their corrosive nature on hand and fabrics **(A)**
 - **(B)** formation of aggregates called micelles
 - **(C)** the froth generated by them
 - **(D)** sodium ions present in them
- 56. The geometry of ethane molecule is
 - Rectangular planar **(A)**

- Tetrahedral (B)
- **(C)** Trigonal bipyramidal
- Square Pyramidal
- 57. Concentration of magnetic ores like FeWO₄ (wolframite) is done by
 - Froth floatation (A)

- **(B)** Gravity separation
- Electromagnetic separation **(C)**
- (D) Roasting
- Which of these properties of elements decreases on going from top to bottom in a group? **58.** Valence electrons
 - **(A)**

(B) Non-metallic nature

Atomic radius **(C)**

- **(D)** electro-positivity
- Which of the following is the main constituent of coal gas? 59.
 - CH_4 **(A)**
- **(B)** CO_2
- C_3H_8 **(C)**
- **(D)** H_2O
- Aqueous solution of CuSO₄ can be stored in a vessel made up of
 - Pt **(A)**
- **(B)** Ag
- **(C)** Au
- **(D)** All of these

- Solder is an alloy of lead (Pb) metal with 61.
 - **(A)** Cu
- **(B)** Sn
- **(C)** Al
- **(D)** Zn

- **62.** The strength of an acid is determined by:
 - (A) Its OH ion concentration
- **(B)** Concentration of H⁺ ions
- **(C)** Amount of water added to it
- **(D)** Its action on iron
- 63. Which of these is not a property of covalent compounds?
 - (A) Their melting temperatures are generally low
 - **(B)** They are usually insoluble in water
 - **(C)** They conduct electricity when added to water
 - **(D)** They are mostly amorphous (powder-like)

64.	Which of	f these is false?										
	(A)	Graphite is use	d as a lu	bricant in high to	emperat	ure machinery						
	(B)	Diamond is har	rd and u	sed for glass cutt	ing							
	(C)	Buckminster fu	ıllerene	is a white solid a	t room t	temperature						
	(D)	Coal is an amo	rphous f	form of carbon co	ontainin	g large amounts	of volat	ile material in it.				
65.	Ethanol i	is prepared by										
	(A)	Fermentation o	of concer	ntrated sugar can	e juice							
	(B)	Reaction between	een meth	nanol and carbon								
	(C)	Reaction between	een CO ₂	and ethene								
	(D)	Reaction between	een meth	nane and water								
66.	Which or	ne of the followi	ng has tl	he highest calorit	fic value	e?						
	(A)	Wood	(B)	Bituminous coa	al							
	(C)	Anthracite coal	l (D)	Lignite coal			: *					
67.	Which or	ne of the followi	ng fracti	ons of petroleum	n has the	e lowest boiling	point?					
	(A)	Kerosene	(B)	Diesel	(C):		(D) ³⁶	L.P.G.				
60	The come	tituanta of anal s	202 0001	Vio	7	es sinc						
68.												
	(C)					memane caroo	11 1110110	xide and nydrogen				
69.	The mos	t reactive form o	f carbon	is EDICAL								
	(A)	diamond	(B)	graphite	(C)	coal	(D)	charcoal				
70.	Carbon i	s soluble in:										
	(A)	conc. HBr	(B)	conc. HCl	(C)	conc. HNO ₃	(D)	dil HCl				
				PART - III	(BIOLO	GY)						
71.	The xvle	m in plants is res	sponsibl									
	(A)	transport of wa	-		(B)	transport of fo	od					
	(C)	transport of am		s	(D)	transport of ox						
72.	The auto	trophic mode of	nutrition	ı requires								
, 	(A)	carbon dioxide		-	(B)	chlorophyll						
	(C)	sunlight			(D)	all of the above	e					
73.	` '	_	ate to giv	ve carbon dioxid		and energy take	s nlace i	in				
, 5.	(A)	cytoplasm	(B)	mitochondria	(C)	chloroplast	(D)	nucleus				
74.			` '			•						
/ 4.		'cell' was given Robert Brown	•	Robert Hooke	(C)	Leeuwenhoek	(D)	Rudolf Virchow				
	(A) Robert Brown (B) Robert Hooke (C) Leeuwenhoek (D) Rudolf Virchow											

75.	'Cell theory' was proposed by											
	(A)	Watson and Cr	rick		(B)	Schleiden and S	Schwan	n				
	(C)	Singer and Nic	colson		(D)	Robert Brown	and Ro	bert Hooke				
76.	Which	of the following is	s called	'powerhouse of the	he cell'?	•						
	(A)	Mitochondria	(B)	Lysosome								
	(C)	Ribosome	(D)	Endoplasmic re	eticulum	1						
77.	'Suicida	al bags' is the term	n given 1	to which of the fo	llowing	; ?						
	(A)	Ribosomes	(B)	Lysosomes	(C)	Mitochondria	(D)	Plastids				
78.	Riboso	mes are the site fo	or									
	(A)	photosynthesis	(B)	protein synthes	sis (C)	respiration	(D)	energy production				
79.	Externa	al fertilization take	es place	in								
	(A)	frog	(B)	hen	(C)	man	(D)	horse				
80. Which one of the following is a hermaphrodite?												
	(A)	Hydra	(B)	Taenia solium	(C)	Pherentima	(D)	All of these				
81.	Reprod	uction is describe	d as a pl	hich or	ganisms	1986						
	(A)	increase in size		_ 1/10	(B)	increase in num	ıber					
	(C)	form new tissu	es and o	organs	(D)	develop from z	ygotes					
82.	Parther	ocarpy refers to the	he devel	lopment of fruit	-0	UNDATIO						
	(A)	after fertilisation		CAL	(B)	without fertilize	ation					
	(C)			with antipodals	(D)	from the petals						
83.	Ovulati	ion takes place on	the	,								
	(A)	10 th day of the		ial cycle	(B)	14 th day of mer	nstrual o	cycle				
	(C)	24 th day of the	menstru	ial cycle	(D)	onset of menstr	rual flor	W				
84.	The org	ganisms that conta	in a seg	ment of foreign I	ONA are	e known as:						
	(A)	GMO	(B)	Transgenic ani	mals							
	(C)	autosomes	(D)	Both (A) & (B))							
85.	In RNA	A, instead of thym	ine and	is pr	esent. F	ill in the blank su	itably.					
	(A)	Adenine	(B)	Guanine	(C)	Cytosine	(D)	Uracil				
86.	Adenin	e & Guanine are										
	(A)	Purines	(B)	Pyrimidines	(C)	RNA	(D)	DNA				
87.	Human	males are										
	(A)	homogametic	(B)	heterogametic	(C)	hermaphrodite	(D)	GMO				
88.	Each he	elical turn of DNA	A has a l	ength of								
	(A)	3.4 nm	(B)	34 nm	(C)	20A°	(D)	10A°				

89.	•	y of fossil plants						
	(A)	Palaeobotany	(B)	Zoology	(C)	Botany	(D)	Geology
90.	Dinosaur							
	(A)	extinct mamma	ıls (B)	extinct reptiles	(C)	extinct birds	(D)	extinct fishes
91.	•	oteryx is the com	•	ink between:				
	(A)	fishes and repti			(B)	reptiles and bire		
	(C)	birds and mami			(D)	mammals and a	ımphibia	ins
92.	_	us organs are sim			(6)	. ,.	(D)	1 1 (1)
	(A)	function	(B)	structure	(C)	inactive	(D)	both (A) and (B)
93.	-	gous organs are s			(
	(A)	origin	(B)	structure	(C)	function	(D)	both (A) and (B)
94.				enewable resourc				
	(A)	Water	(B)	Agricultural	(C)	Aquatic animal	s (D)	Fossil fuels
95.		f the following is	a renew			ano		
	(A)	Fossil fuel	(B)	Natural gas	(C)	Natural vegetat	ion (D)	Petroleum
96.	The solid	l part of earth cru	ast is cal	led:	7	as since		
	(A)	atmosphere	(B)	hydrosphere	(C)	lithosphere	(D)	soil erosion
97.	The main	source of energ	y is:	hydrosphere petrol ns is: India is:		INDA		
	(A)	sun light	(B)	petrol	(C)	diesel	(D)	biogas
98.	The part	of earth covered	by ocea	ns is:				
	(A) 45°	%	(B) 509	%	(C) 719	%	(D) 25%	%
99.								a
	(A)	rice	(B)	soybean	(C)	mustard	(D)	sunflower
100.	Which of (A)	f the following is Wheat	a rich s (B)	ource of protein? Rice	? (C)	Soybean	(D)	Maize
101	` ′				(C)	Soybean	(D)	Maize
101.	(A)	source of vitam cereals	ins and i	minerals are fruits and veget	ahles			
	(C)	oils	(D)	nuts	uoies			
102.	Which of	f the following fr	uit is ric	ch in vitamin C?				
	(A)	Mango	(B)	Orange	(C)	Apple	(D)	Guava
103.	Cereals a	re major source	of:					
	(A)	fats	(B)	proteins	(C)	vitamins	(D)	carbohydrates
104.	Kharif cr	ops are grown d	uring:					
	(A)	June-October	(B)	November-Apr	il (C)	January-March	(D)	September only
105.	•	os are sown durin	•					
	(A)	November-Apr	il (B)	January-March	(C)	June-October	(D)	October only

PART - IV (MENTAL ABILITY)

Directions for Q. Nos. 106 & 107:

T1		c.	11	١	·			·		1 1		41	c.	11	l :		4	4	
	าค	TΩ		\mathbf{O}	W/11	ıσ	anesi	ากทร	are	nasea	Oη	The	TΩ	ш	lowing	STA	rem	ents	٠.
	.10	\mathbf{r}	11	·	* * 11	-5	quest	10115	ui C	Dubea	OII	uic	10	11	O W III S	Sta	CLIII	CIILD	•

(i)	In a family of six people A, B, C, D, E and F, there are two married couples.
(ii)	A is son of B.

- (iii) D is grandmother of A and mother of B.
- (iv) F is granddaughter of E.

106.	How ma	ny male memb	oers are	there in the fan	nily?			
	(A)	1	(B)	2	(C)	3	(D)	4

107. What is C to A?

(A) Brother (B) Sister (C) Father (D) Mother

108. A has 3 children. B is the brother of C and C is the sister of D, E who is the wife of A is the mother of D. There is only one daughter of the husband of E. What is the relation between D and B?

(A) Sister (B) Mother (C) Father (D) Brother

Directions for Q. Nos. 109 to 111:

P, Q, R, S, T, U, V & W are the family members. Q is the sister of V and V is the brother of R. T whose father is W, wife of P. S is the husband of Q and U is the son of V. P is the father of Q.

109. How U is related with T?

(A) Son (B) Mother (C) Grandson (D) Nephew

110. How S is related with R?

(A) Son (B) Uncle (C) Brother-in-law(D) Brother

111. How W is related with R?

(A) Grandfather (B) Uncle (C) Son (D) Brother

112. Siva, Sathish, Amar and Praveen are playing cards. Amar is to the right of Sathish, who is to the right of Siva. Who is to the right of Amar?

(A) Praveen (B) Sathish (C) Siva (D) Can't be determined

113. Pointing towards a man another man said, he is the son of my father's sister. Then what is the relation between them?

(A) Father-Son (B) Brother (C) Cousin (D) Uncle-Nephew

114. If a clock shows 04:28 then its mirror image will be?

(A) 17:32 (B) 07:32 (C) 11:60 (D) 07:28

115. Manish slept at 7:45 pm. If he rose at 12:00 noon, how many hours did he sleep?

(A) 4 hours 15 min (B) 12 hours (C) 16 hours 15 min (D) 6 hours 15 min

35

- **116.** Find the missing number of the given series: 1, 4, 9, 16, 25, ?
 - **(A)**
- 36 **(B)**
- 37 **(C)**
- 49 **(D)**

- **117.** Find the wrong term: 2, 6, 11, 17, 23, 32, and 41
 - **(A)**
- 6
- 17 **(B)**
- 23 **(C)**
- **(D)** 32
- 118. If HARISH is coded as ITJSBI, then how would REEMA be coded?
- **CNFCS**
- **(B) BNFFS**
- **(C) BFNNS**
- **(D) CNFFS**
- 119. Which of the following diagram correctly represents India, Pakistan and Asia?

Directions for Q. Nos. 120:

Which of the Venn diagrams given in the alternatives best represents the relation between the given items?

120. Animals, Cows, Grass-eating animals

জ্ঞ জ End of Sample Paper | 2 Year Medical ও ও ও

Answers to Sample Paper | 2 Year Medical

Sample Paper - I

	PHYS	SICS	CHEM	ISTRY	BIOI	LOGY	MENTAL ABILITY
	1.	(C)	36.	(C)	71.	(A)	106. (C)
	2.	(B)	37.	(D)	72.	(D)	107. (D)
	3.	(D)	38.	(A)	73.	(B)	108. (D)
	4.	(C)	39.	(A)	74.	(B)	109. (C)
	5.	(D)	40.	(A)	75.	(B)	110. (C)
	6.	(D)	41.	(A)	76.	(A)	111. (A)
	7.	(B)	42.	(D)	77.	(B)	112. (D)
	8.	(B)	43.	(C)	78.	(B)	113. (C)
	9.	(A)	44.	(D)	79.	(A)	198 f14. (B)
	10.	(D)	45.	(D)	80.	(D) 51N	115. (C)
	11.	(B)	46.	(B)	81.	(B)	116. (B)
	12.	(C)	47.	(B)	82.	(B)	117. (C)
	13.	(A)	48.	(B)	83.	(B)	118. (B)
	14.	(B)	49.	(A)	84.	(D)	119. (C)
	15.	(A)	50.	(A)	85.	(D)	120. (C)
N	16.	(D)	51.	(B)	86.	(A)	
	17.	(D)	52.	(B)	87.	(B)	
	18.	(C)	53.	(B)	88.	(A)	
	19.	(D)	54.	(A)	89.	(A)	
	20.	(B)	55.	(B)	90.	(B)	
	21.	(B)	56.	(B)	91.	(B)	
	22.	(A)	57.	(C)	92.	(A)	
	23.	(C)	58.	(B)	93.	(D)	
	24.	(D)	59.	(A)	94.	(D)	
	25.	(B)	60.	(D)	95.	(C)	
	26.	(C)	61.	(B)	96.	(C)	
	27.	(B)	62.	(B)	97.	(A)	
	28.	(C)	63.	(C)	98.	(C)	
	29.	(A)	64.	(C)	99.	(A)	
	30.	(B)	65.	(A)	100.	(C)	
	31.	(C)	66.	(C)	101.	(B)	
	32.	(C)	67.	(B)	102.	(B)	
	33.	(D)	68.	(D)	103.	(D)	
	34.	(D)	69.	(D)	104.	(A)	
L	35.	(D)	70.	(C)	105.	(A)	

Sample Paper - 2 Year Program

Admission & Scholarship Test | Medical

Duration: 3.0 Hrs

Maximum Marks: 480

PAPER SCHEME:

- The paper contains 120 Objective Type Questions divided into four sections: Section I, Section II, Section III and Section IV
- Section I contains 35 Multiple Choice Questions (1-35) based on Physics. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- Section II contains 35 Multiple Choice Questions (36-70) based on Chemistry. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- Section III contains 35 Multiple Choice Questions (71-105) based on Biology. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- **Section IV** contains **15 Multiple Choice Questions (106-120)** based on Mental Aptitude. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct**.

MARKING SCHEME:

• **Section I, II, III and IV**: For each question, **4 marks** will be awarded for correct answer and **-1 negative marking** for incorrect answer.

GENERAL INSTRUCTIONS:

- For answering a question, an **ANSWER SHEET (OMR SHEET)** is provided separately. Please fill your **Name, Roll Number, Seat ID, Date of Birth** and the **PAPER CODE** properly in the space provided in the **ANSWER SHEET.** IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

PART - I (PHYSICS)

1.	In a met	allic conductor c	urrent f	lows due to)						
	(A)	flow of proton	S	((B)	flow o	of free electrons	S			
	(C)	flow of alpha	particles	((D)	all of	the above				
2.	The wor	k done in bringi ll be	ng a cha	erge of 0.2	C fron	n infinity	y to a point is 1	0 J. The p	potential at this		
	(A)	0.02 Volt	(B)	100 Vol	t	(C)	50 Volt	(D)	2 Volt		
3.	Work do	ne in moving a cha	arge of 4	coulomb fro	om a po	oint at 220) volt to another	point at 23	0 volt is		
	(A)	2.5 J	(B)	5 J		(C)	10 J	(D)	40 J		
4.	The free	electrons of a m	netal are	free to							
	(A)	move on the su	urface of	nly		(B)	escape throu	gh the sur	face		
	(C)	fall into the nu	ıclei			(D)	move anywh	ere in the	metal		
5.		narge on an elect or in 1 second to					many electror	ns should	pass through a		
	(A)	6.25×10^{18}	(B)	12.50 ×	10^{18}	(C)	6.25×10^{19}	(D)	12.50×10^{19}		
6.		nt of 2 amp flow work done is	ws for 1	minute be	etweer	two po	oints having po	otential di	fference of 12		
	(A)	144 J	(B)	24 J	26	(C)	720 J	(D)	1440 J		
7.	For a gi	ven potential diff	ference.	The curren	nt in a	wire dep	pends				
	(A)	only on the ma	nterial of	f the wire		OU					
	(B)	only on the len	ngth of t	he wire							
	(C)	only on the are	ea of cro	ss section	of the	wire					
	(D)	on all of the ab	oove								
8.	There are two bulbs A and B and resistance of A is greater than that of B . When the same										
	-	l difference is ap	-								
	(A)	brightness of A									
	(B)	brightness of E									
	(C)	brightness of A		-)				
	(D)	nothing can be					5.				
9.	•	be of current (I) v		• • •				(3.)			
	(A)	resistance	(B)	conducta	ance	(C)	resistivity	(D)	conductivity		
10.	The sub	stance which has	maxim	um resistiv	vity (o	ut of the	following only) is:			
	(A)	manganese	(B)	constant	an	(C)	manganin	(D)	nichrome		
11.	-	ential difference of 4A from the s									
	(A)	2A	(B)	4A		(C)	8A	(D)	16A		

- **12.** Resistance of a copper wire 1 m long and with cross section area 1 mm² that is (10⁻⁶m²) is, (Given that resistivity of copper wire = $1.6 \times 10^{-8} \Omega m$)
 - (A) 0.16Ω
- **(B)** 1.6Ω
- **(C)** 0.016Ω
- **(D)** 16Ω
- Two resistors A and B have resistances R_A and R_B respectively with $R_A < R_B$. The resistivities of their materials are ρ_A and ρ_B , then the relation between ρ_A and ρ_B is
 - (A) $\rho_A > \rho_B$
- **(B)**
- $\rho_A = \rho_B$
- The information is not sufficient to find the relation between ρ_A and ρ_B **(D)**
- A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the ratio R/R' is
 - (A)
- 1/25
- **(B)** 1/5
- **(C)**

5

- 25 **(D)**
- A conductor with rectangular cross-section has dimensions $(a \times 2a \times 4a)$ as shown in the figure. Resistance across AB is x, across CD is y and across EF is z. Then

- (A) x = y = z
- **(B)**
- **(C)** y > z > x
- **(D)** x > z > y
- When two resistances are joined in parallel their resultant is 1.2 ohm. One of the resistance wire is broken and the effective resistance becomes 2 ohm. The resistance of the broken wire was
 - (A) 0.75Ω
- 2Ω **(B)**
- (C) 1.2Ω
- n equal resistors when added in series give equivalent resistance S. When added in parallel the (B) SICAL | FOUR equivalent resistance will be
 - (A) nS

- **(D)**

In the given circuit diagram, the equivalent resistance between point A and B is

(B)

- 9Ω **(C)**
- **(D)** $\frac{13}{11}\Omega$
- 19. The equivalent resistance of the following circuit across AB is

- 4Ω (A)
- 3Ω **(B)**
- **(C)** 2Ω
- **(D)** 8Ω
- In the circuit shown in the figure, equivalent

(B) 25Ω

21.	The effective	equivalent	resistance	between A	and B	in the	figure is

(B)

(C)

(D) 2R

22. A resistance of 2 ohms is connected in series with another resistance of 4 ohms. A potential difference of 12 volts is applied across the combination. Potential difference across 2 ohms resistance is

(A)

2 volts

(B) 4 volts **(C)** 6 volts

3

(D) 8 volts

23. The number of bulbs of resistance 6 Ω each which should be joined in parallel to draw a current of 2 A from a battery of 3 volts is

(A)

5

(B)

(C)

(D) 4

24. Consider the following statements

(I) In series connection, the same current flows through each element

(II) In parallel connection, the same potential difference gets applied across each element

(A) Both (I) and (II) are correct **(B)** (I) is correct but (II) is wrong

(C) (I) is wrong but (II) is correct (D) both (I) and (II) are wrong

When two resistors are joined in series, the equivalent resistance is 90Ω . When the same resistors are joined in parallel, the equivalent resistance is 20Ω . The resistances of the two resistors are

 $25 \Omega, 65 \Omega$ (A)

 $30 \Omega, 60 \Omega$ **(B)**

 40Ω , 50Ω

(D) $45 \Omega, 45 \Omega$

An electric fuse can prevent accidents arising from: **26.**

> (A) an over load but not due to a short circuit

> **(B)** a short circuit but not due to an overload

an overload as well as a short circuit **(C)**

(D) neither an overload nor a short circuit

A uniform wire of resistance 50 Ω is cut into 5 equal parts. These parts are now connected in parallel. The equivalent resistance of the combination is:

(A) 2Ω

 10Ω **(B)**

(C)

 6250Ω **(D)**

28. The colours recommended for wires carrying live, neutral and earth lines taken in the same order are:

(A) red, black, green **(B)** red, green, black

 250Ω

(C) black, green, red **(D)** black, red, green

In electric fittings in a house 29.

> (A) the live wire goes through the switch

(B) the neutral wire goes through the switch

(C) the earth wire goes through the switch

(D) no wire goes through the switch

- **30.** Which of the following describes the common domestic power supplied in India?
 - 220 V, 100 Hz (A)
- 110 V, 100 Hz **(B)**
- **(C)** 220 V, 50 Hz
- **(D)** 110V, 50 Hz
- A circuit contains three resistors R_1 , R_2 and R_3 in series and a cell of emf V Volts, if the potential difference across R_1 , R_2 and R_3 be V_1 , V_2 and V_3 then:
 - $V = V_1 + V_2 + V_3$ **(A)**
- **(B)** $\frac{1}{V} = \frac{1}{V_1} + \frac{1}{V_2} + \frac{1}{V_2}$
- $V = \frac{V_1 V_2 + V_2 V_3 + V_3 V_1}{V_1 + V_2 + V_3}$ (D) $V = \frac{V_1 V_2 V_3}{V_1 + V_2 + V_3}$ **(C)**
- **32.** An ammeter is always connected in and voltmeter in The suitable words, in order, for the blanks are:
 - series, series (A)

- **(B)** parallel, parallel
- **(C)** parallel, series
- **(D)** series, parallel
- 33. On which of the following no plus or minus sign is marked.
 - **(A)** a cell
- **(B)** an ammeter
- (C) a voltmeter
- a resistor
- Current passing through 1Ω resistance is zero. Then the emf E is
 - 8 V **(A)**
- **(B)**
- **(C)** 12 V
- **(D)**

From left to right the following symbols represent OUNDAT **35.**

- open switch, closed switch, wire joint, variable resistance (A)
- **(B)** closed switch, open switch, wire joint, variable resistance
- closed switch, open switch, variable resistance, wire joint **(C)**
- **(D)** open switch, variable resistance, closed switch, wire joint

PART - II (CHEMISTRY)

- **36.** The correct formula of washing soda is
 - (A) Na₂CO₃
- Na₂CO₃.H₂O **(B)**
- **(C)** $Na_2CO_3.9H_2O$ (**D**)
- Na₂CO₃.10H₂O
- 37. Aqueous solution of which of the following salts turns red litmus blue?
 - **(A)** Na₂CO₃
- **(B)** NaHCO₃
- **(C)** $Na_2CO_3.10H_2O$ **(D)**
- All of these
- **38.** If tartaric acid is not added in baking powder, the cake will taste bitter due to the presence of
 - (A) sodium hydrogen carbonate
- carbon dioxide **(B)**

(C) sodium carbonate

all of these **(D)**

39.	Soda-ac	id fire extinguisher exti	nguishes the fire				
	(A)	by cutting the supply	of air				
	(B)	by removing the com	bustible substance	e			
	(C)	by raising the ignition	n temperature				
	(D)	By producing SO ₂ ga	ıs				
40.	The sim	plest formula of bleach	ing powder is				
	(A)	Ca(OCl ₂)		(B)	CaOCl ₂		
	(C)	CaOCl ₂ .H ₂ O		(D)	Ca(OCl ₂).2H	₂ O	
41.	Element	ts belongs to the same g	group have similar	propert	ies because		
	(A)	they have similar elec	etronic configurat	ion of th	ne outermost she	ell	
	(B)	their atomic numbers	go on increasing	as we m	nove down the g	group	
	(C)	all of them are metall	lic elements				
	(D)	they have same textu	re				
42.	The dea	d burnt plaster is					
	(A)	CaSO ₄ .2H ₂ O		(B)	$CaSO_4.\frac{1}{2}H_2O_4$		
	(C)	CaSO ₄	Vbiv	(D)	3CaSO ₄ .H ₂ O	986	
43.	Bleachin	ng powder is soluble in	cold water giving	a milky	solution due to)	
	(A)	available chlorine	Cla-		DATION		
	(B)	lime present in it		EOU	ND		
	(C)	calcium carbonate for	rmation				
	(D)	available chlorine lime present in it calcium carbonate for the absorption of carb	oon dioxide from	atmosph	iere		
44.	In which	n of the following pair,				?	
	(A)	milk of lime and lime	e water	(B)	dead burnt pl	aster and	gypsum
	(C)	alumina and gypsum		(D)	gypsum and j	plaster of	Paris
45.	A soluti	on turns red litmus blue	e, the pH of solution	on is lik	ely to be		
	(A)	1 (B)	4	(C)	5	(D)	10
46.	Ethane v	with the molecular form	nula C ₂ H ₆ has				
	(A)	6 covalent bonds		(B)	7 covalent bo	onds	
	(C)	8 covalent bonds		(D)	9 covalent bo	onds	
47.	Butanon	ne is a four-carbon comp	pound with the fu	nctional	group		
	(A)	carboxylic acid (B)	aldehyde	(C)	ketone	(D)	alcohol
48.	While co	ooking if the bottom of	the vessel is getti	ng black	cened on the out	tside, it m	eans that
	(A)	the food is not cooke	d completely	(B)	the fuel is no	t burning	completely
	(C)	the fuel is wet		(D)	the fuel is bu	rning con	npletely

49. The gas evolved when ethanol reacts with sodium metal is									
	(A)	H_2	(B)	CO_2	(C)	$\mathrm{H_2O}$	(D)	CO	
50.	Which o	of the following	reactions	s is called este	rification?				
	(A)	CH ₃ COOH+	NaHCO	$O_3 \rightarrow CH_3COC$	$ONa + H_2O$	$+ CO_2$			
	(B)	$C_2H_5OH \rightarrow C_2$	$C_2H_4 + H$	I_2O					
	(C)	$C_2H_5OH + CI$	H ₃ COOI	$H \rightarrow CH_3COO$	$C_2H_5 + H_2$	O			
	(D)	CH ₃ COOC ₂ H	$I_5 + NaC$	$OH \rightarrow CH_3CO$	$ONa + C_2H$	I ₅ OH			
51.	Which o	of the following	is incorr	ectly matched	?				
	(A)	$vinegar \rightarrow car$	boxylic	acid	(B)	$C_2H_6 \rightarrow$	alkane		
	(C)	ethanol \rightarrow alc	ohol		(D)	methanol	\rightarrow ketone		
52.	The num	nber of single an	d double	e bonds (total)	present in	ethanoic aci	id is		
	(A)	5	(B)	6	(C)	7	(D)	8	
53.	The nun	nber of structura	l isomer	s for an alkane	e with a mo	olecular mas	s 72 g/mole i	is	
	(A)	2	(B)	3	(C)	4nc	(D)	5	
54.	What ha	appens when dilu	ite hydro	ochloric acid is	s added to i	iron fillings	Tick the co	rrect answe	r
	(A)	Hydrogen gas	and iron	n chloride are		5 SING			
	(B)	Chlorine gas a			produced	TATIC	and water are		
	(C)	No reaction ta			. 400	Iron salt a	nd water are	produced	
55.	The read	ction, 2Na + Cl ₂			ple of				
	(A)	combination r	=	EDIO	(B)	•	sition reaction		
	(C)	displacement	reaction		(D)	double de	composition	reaction	
56.	Which o	of the following			combinatio				
	(A)	$CaO + CO_2 -$	→ CaCO ₃	3	(B)	$4Na + O_2$	\rightarrow 2Na ₂ O		
	(C)	$SO_2 + \frac{1}{2}O_2 -$	\rightarrow SO ₃		(D)	$NH_3 + HO$	$Cl \rightarrow NH_4Cl$		
57.	When le	ead nitrate is hea	ted it bre	eaks down into	o lead mone	oxide, nitrog	gen dioxide a	and oxygen.	
	2Pb(No	O_3) ₂ \rightarrow 2PbO +	4NO ₂ +	O ₂ . The reacti	ion is an ex	ample of			
	(A)	combination r	reaction		(B)	decompos	sition reaction	n	
	(C)	double decom	position	reaction	(D)	displacem	ent reaction		
58.	Which o	of the following	is a disp	lacement react	tion?				
	(A)	NaOH + HNC	$O_3 \rightarrow Na$	$NO_3 + H_2O$					
	(B)	$Cu + 2AgNO_{3}$	$\rightarrow Cu($	NO_3 ₂ + 2Ag					
	(C)	$2Hg + O_2 \rightarrow 2$	2HgO						
	(D)	FeCl ₃ + 3NaC	$0H \rightarrow 3N$	JaCl + Fe(OH)	3				

59.	Which of	of the following reactions will	not take p	lace?				
	(A)	$Zn + FeSO_4 \rightarrow ZnSO_4 + Fe$	(B)	2KI +	$Cl_2 \rightarrow 2KCl +$	- I ₂		
	(C)	$Zn + MgSO_4 \rightarrow ZnSO_4 + M$	Ig (D)	Mg +	$CuSO_4 \rightarrow Mg$	$SO_4 + Cu$		
60.	The rea	action in which two compoun	ıds exchar	nge their	ions to from	two new	compounds	is
	(A)	a displacement reaction	(B)	decon	nposition react	ion		
	(C)	an isomerization reaction	(D)	doubl	e displacement	reaction		
61.	The IUI	PAC name of compound,						
	[CH-CH ₂ OH OH						
	(A)	1,2,3-trihydroxypropane	(B)	3-hyd	lroxypentane-1	1,5–diol		
	(C)	1,2,3-hyroxypropane	(D)	propa	ne-1,2,3-triol			
62.		the gases sulphur dioxide and $2H_2S \rightarrow 2H_2O + 3S$. Here, hyd		-		ns water,	the reaction	is
	(A)	an oxidizing agent	(B)	a redu	icing agent			
	(C)	a dehydrating agent	(D)	a cata	lyst	1986	\	
63.	In the re	eaction, $2\text{FeCl}_2 + \text{Cl}_2 \rightarrow 2\text{FeCl}$	3, chlorine	may be	regarded as			
	(A)	an oxidizing agent	(B)		icing agent	4		
	(C)	a catalyst	(D)		stance that prov	vides an in	ert medium	
64.	Which	of the following statement is in	correct?	FOU				
	(A)	metals have lustre	CH.					
	(B)	all metal oxides are basic in						
	(C)	metals have 1, 2 or 3 electron	ons in the o	outermos	t shell			
	(D)	metals are malleable						
65.	Which	of the following is second mos	t abundant	t metal ir	the Earth's cr	ust?		
	(A)	copper (B) alu	minum	(C)	iron	(D)	zinc	
66.	Metallu	rgy is a process of						
	(A)	extracting metal from sand		(B)	extracting m	ietal from	its ore	
	(C)	extracting metal from the se	a	(D)	extracting m	ietal from	its pure salt	
67.	Matrix	is defined as						
	(A)	the unwanted foreign materi	ial present	in the or	re			
	(B)	the flux added to remove the	e unwante	d impuri	ties from ore			
	(C)	the slag formed as a result of	f the react	ion of flu	ıx with gangue	:		
	(D)	the material used in the redu	iction of n	netal oxid	de to metal			
68.	Which	of the following is not an ore o	f aluminiu	ım?				
	(A)	cryolite (B) feld	lspar	(C)	bauxite	(D)	azurite	

69. The function of adding cryolite in the extraction of aluminium from pure alumina is								is		
	(A)	to increase the	fusion te	mperatu	re					
	(B)	to decrease the	conduct	ivity of a	alumin	a				
	(C)	to decrease the	fusion to	emperatu	ire and	increase	the electrical co	onductiv	ity	
	(D)	to dissolve alur	nina in v	vater						
70.	Which	of the following p	air is inc	correct?						
	(A)	malachite – cop	pper		(B)	siderite – iron				
	(C)	calamine – alur	minium		(D)	galena	ı – lead			
				PART -	III (BIC	n OGY)				
				IANI	III (DIC	LOGI				
71.		of the following of the	ng even	ts does	not	occur e	xclusively duri	ing ligh	t reaction	ı of
	(A)	Photolysis of w	ater			(B)	Transduction	of light e	energy	
	(C)	Absorption of s	solar ene	rgy		(D)	Reduction of	CO_2		
72.	Which	one of these reacti	ons occi	ırs durin	g phot	osynthes	is?			
	(A)	Carbon dioxide	is reduc	ed and v	vater is	s oxidize	dan			
	(B)	Water is reduce	ed and ca	arbon die	oxide i	s oxidize	d SINCE 19	786		
	(C)	Carbon dioxide	and wa	ter are b	oth oxi	dized				
	(D)	Carbon dioxide	and wa	ter are b	oth red	uced	red immediately			
73.	From a	catabolic reaction	energy	obtained	by a c	ell is sto	red immediately	in the fo	orm of	
,	(A)	Pyruvic acid	(B)	Glucos	e	(C)	ATP	(D)	ADP	
74.	Respira	tion is a/an	IME	DIC						
	(A)	Biochemical pr	ocess			(B)	Physico-chem	ical prod	cess	
	(C)	Physical proces	SS			(D)	Oxidation pro	cess		
75.	Rate of	breathing in an ac	quatic or	ganism						
	(A)	Is much slower	than tha	it seen ir	terres	trial orga	nnisms			
	(B)	Is much faster t	than that	seen in	terresti	rial organ	nisms			
	(C)	Breathing does	not occi	ır						
	(D)	Equals to that s	seen in te	errestrial	organi	sms				
76.	In whic	h of the following	process	CO ₂ is 1	elease	d?				
	(A)	Glycolysis			(B)	Photos	synthesis			
	(C)	Alcohol fermer	ntation		(D)	Lactic	acid fermentation	on		
77.	In oxyg	genated blood, one	molecu	le of hen	noglob	in can ca	rry how many n	nolecules	s of oxyger	1?
	(A)	2	(B)	4		(C)	8	(D)	1	
78.	Chemic	al released by blo	od platel	lets is						
	(A)	Heparin				(B)	Fibrinogen			
	(C)	Thromboplastin	n		(D)	Prothrombin				

79.	Which o	of the following	g blood co	orpuscle is agra	nulocytic	in nature?		
	(A)	Eosinophils	(B)	Basophils	(C)	Lymphocytes	(D)	Neutrophils
80.	Which o	of the following	have thr	ee chambered a	and two ch	ambered hearts r	espectiv	ely?
	(A)	Birds and am	phibians		(B)	Reptiles and an	nphibia	ns
	(C)	Amphibians	and fish		(D)	Birds and repti	les	
81.	The onl	•	carries de	eoxygenated blo	ood, receiv	ves blood by pun	nping o	f which part of
	(A)	Left ventricle	е		(B)	Left auricle		
	(C)	Right ventric	ele		(D)	Right auricle		
82.	Contrac	tion of left vent	tricle pun	nps blood into				
	(A)	Right auricle	:		(B)	Pulmonary arte	ery	
	(C)	Pulmonary v	ein		(D)	Dorsal aorta		
83.	Urine le	eaves the kidney	/ through					
	(A)	Urethra	(B)	Collecting d	uct (C)	Renal vein	(D)	Ureter
84.	Nitroge	nous wastes are	formed f	from the break	lown of	andly		
	(A)	Ammonia	(B)	Fat	(C)	Amino acids	8(D)	Water
85.	The fun	ction of glomer	ulus in ki	idney is		S SINCE !		
00.	(A)	Blood filtrati		une) is	5 (B)	Reabsorption of	of salt	
	(C)	Reabsorption		Cla	,	All the above	, i sait	
86.		ill happen if on			FOU			
ου.	(A)	The person v			5011 15 10111	loved:		
	(B)		- / LAI	nulating in bloc	od.			
	(C)			e and remain n				
	(D)	Urination wi						
87.	Urinifer	ous tubules are	mainly c	oncerned with				
07.	(A)	Concentratio	•					
	(B)	passage of un						
	(C)			l substances fro	om glomer	rular filtrate		
	(D)	Removal of t			C			
88.	The pla	nt hormone whi	ich is esse	ential for cell di	ivision is			
	(A)	Ethylene	(B)	Auxin	(C)	Gibberellin	(D)	Cytokinin
89.	Which o	of these plant he	ormones i	is a growth inhi	bitor ?			
	(A)	Ethylene	(B)	Auxin	(C)	Abscisic acid	(D)	Cytokinin
90.	Master	endocrine gland	l of the bo	odv is				
- *	(A)	Testis		Pituitary	(C)	Thyroid	(D)	Adrenal

91.	People	suffering from	n diabetes 1	nellitus a	re unab	le to seci	rete		
	(A)	Insulin	(B)	Adren	aline	(C)	Thyroxin	(D)	Vasopressin
92.	The sea	nt of intelligen	ice and volu	untary act	tions in	the brain	ı is		
	(A)	Diencepha	lon			(B)	Cerebellum		
	(C)	Cerebrum				(D)	Medulla oblo	ongata	
93.	In Spire	ogyra, asexua	l reproducti	ion takes	place by	y:			
	(A)	Breaking v	ıp of filame	ents into s	maller l	oits			
	(B)	Division o	f a cell into	two cells	8				
	(C)	Division o	f a cell into	many ce	lls				
	(D)	Formation	of young	cells from	older o	ells			
94.	The abi	lity of an orga	anism to de	velop wh	ole bod	y from a	broken piece o	or fragme	nt is called:
	(A)	Binary fiss	sion			(B)	Budding		
	(C)	Multiple fi	ssion			(D)	Regeneratio	n	
95.	Length	of pollen tube	e depends o	on the dist	tance be	etween:	10		
	(A)	Pollen grai	n and uppe	r surface	of stigr	na	andi		
	(B)	Pollen grai	n on upper	surface c	of stigm	a and ov	ule	086	
	(C)		n in anther					900	
	(D)	Upper sur	face of stig	ma and lo	ower pa	rt of style			
96.	Asexua	l reproduction	ı takes plac	e through	r buddir	ng in:	NDATION		
7 0.	(A)	Amoeba	(B)	Yeast		Plasm	odium (D)	Leish	mania
97.	The pro	ocess of releas	se of an ego	from the	AL	is called:	,		
<i>)</i> 1.	(A)	Fertilization			duction		Ovulation	(D)	Pollination
98.		aracter which		•		. ,	experiment:	()	
<i>7</i> 0.	(A)	Length of		(B)		of the p	•		
	(C)	Length of		(D)	•	r of unri			
			-	` ,					
99.		chose garder	• `		m) to st	udy beca	use:		
	(A)	•	easy to gro						
	(B)	They were characters	e available	in man	ıy disti	nguishab	le varieties w	ith contr	asting sets of
	(C)	In them, se	elf and cros	s pollinat	ion cou	ld be dor	ne easily		
	(D)	All of the	above						
100.	Genetic	es is a branch	of biology,	dealing v	with:				
	(A)	Heredity in	n living bei	ngs	(B)	Variat	ions in living b	eings	
	(C)	Both hered	lity and var	iations	(D)	Evolu	tion of living b	eings	
101.	The pai	rs of characte	rs used by	Mendel d	luring h	is experi	ment on garder	n pea were	e:
	(A)	Ten	(B)	Six	-	(C)	Seven	(D)	Three

102.	Out of the	ne pair of contrasti	ng character	s, one i	s dom	inant an	d the otl	her is r	ecessi	ve. This	
	principle	is popularly known	as:								
	(A)	Law of dominance		(B)	Law	of segreg	ation				
	(C)	Law of independen	t assortment	(D)	Law o	of purity	of gamet	es			
103.	Which of false?	f the following stat	ements abou	t food o	chain a	and ener	gy flow	through	ecos	ystem is	
	(A)	Food web includes	two or more	food ch	ains						
	(B)	All organisms that	are not produ	icers are	consu	mers					
	(C)	A single organism	can feed at se	everal tr	ophic l	evels					
	(D)	Decomposers feed	at all trophic	levels e	xcept t	he produ	icer level				
104.		ation of non-biodeg		nicals in	the fo	od chain	s in incre	easing a	moun	t at each	
	(A)	Eutrophication		(B)	Pollut	ion					
	(C)	Biomagnification		(D)	Accur	nulation					
105.	Disposab	le plastic plates, gla	sses should n	ot be us	ed beca	ause	124				
	(A)	They are made of l	ight weight n	naterial		ar	GI				
	(B)	They are made of to	oxic material		an	10,	- 19	86			
	(C)	They are made of h	neat resistant	material		S 51	dir		l.		
	(D)	They are made of n	on-biodegrae	dable ma	aterial		ON				
	PART - IV (Mental Aptitude)										
Direc	tions for	Q. Nos. 106 to 107:		TIF	OU						
X is 1	nother of	Y but Y is not the da	aughter of X.	S is son	of G a	and broth	ner of T.	Γ is siste	er of Y	7	
106.	What is the	he relationship betw	een G and T	?							
	(A)	Father – Daughter	(B)	Mother	– Dau	ghter					
	(C)	Brother – Sister	(D)	Can't b	e foun	d					
107.	What is the	he relationship betw	een G and X	?							
	(A)	Husband – Wife	(B)	Brother	r – Sist	er					
	(C)	Uncle – Niece	(D)	No rela	tion						
108.	_	to Ravindra, Manish related to Manish?	n said, "I am	the only	son o	f one of	the sons	of his fa	ather.'	'How is	
	(A)	Nephew	(B)	Uncle							
	(C)	Father or Uncle	(D)	Father							
Direc	ctions for	Q. Nos. 109 to 113:									
		A, B, C, D, E and F -							of D.	E and F	
	-	ns standing between				wo perso	ons is C o	r A.			
109.	What is the (A)	the total number of p 2 (B)		gements	s? (C)	6		(D)	5		
	(A)	Z (D) 4		101	U		ועו	J		

110.	Who am	ong the followin	g stand a	at the extreme en	ds of th	e row?		
	(A)	E and F	(B)	E and C	(C)	A and C	(D)	F and A
111.	If A sits	to the immediate	e left of l	E, then who sits	to the in	nmediate right of	B?	
	(A)	D	(B)	F	(C)	C	(D)	E
112.		is permitted to ober of possible			ner cond	itions remaining	the san	ne, what is the
	(A)	36	(B)	48	(C)	18	(D)	24
113.	Who am	ong the followin	g sits to	the immediate le	eft of C,	if B sits to the in	nmediat	e right of E?
	(A)	D	(B)	F	(C)	В	(D)	Е
114.		outh – West of F with LK. In wh				th – East of K ar	nd N is t	o the North of
	(A)	North	(B)	East				
	(C)	South – East	(D)	North – East				
115.	passed a	anked sixteenth n examination. tion. How many	Six boys	s did not partici	pate in		and five	•
116.	A certain	n number of ho	rses and	an equal numb				e. Half of the
	owners a	are on their hor f the number of l	ses bacl	while the rem	naining ond is 70,	ones are walkin how many hors	g along es are th	leading their ere?
1	(A)	10 of 324 coins of 2	(B)	12 CAL	(C)	14	(D)	16
117.	A total o	of 324 coins of 2	0 paisa a	and 25 paisa mal	ke sum	of Rs. 71 the nur	mber of	25 paisa coins
	(A)	120	(B)	124	(C)	144	(D)	200
118.		left home for the reached the stop		•				
	(A)	1.40 a.m.	(B)	1.45 a.m.				
	(C)	1.55 a.m.	(D)	Data inadequat	e			
119.	If 4th da	y of any month v	vas Suno	lay, what will be	the day	on 27th day of t	the same	month?
	(A)	Monday	(B)	Tuesday	(C)	Wednesday	(D)	Saturday.
120.	Find the	missing alphabe	t A, C, F	5, ?, O				
	(A)	G	(B)	J	(C)	Н	(D)	K

కాం కాం End of Sample Paper | 2 Year Medical | Paper II లు లు లు

Answers to Sample Paper | 2 Year Medical

Sample Paper - II

PHYSIC	CS CHEM	IISTRY	BIOL	OGY	MENTAL	ABILITY
1. (B	36.	(D)	71.	(D)	106.	(A)
2. (C	·	(D)	72.	(A)	107.	(A)
3. (D	38.	(C)	73.	(C)	108.	(C)
4. (D	39.	(A)	74.	(B)	109.	(B)
5. (B	40.	(B)	75.	(B)	110.	(C)
6. (D) 41.	(A)	76.	(C)	111.	(A)
7. (D) 42.	(C)	77.	(B)	112.	(A)
8. (B	43.	(B)	78.	(C)	113.	(B)
9. (B	3) 44.	(A)	79.	(C)	114.	(D)
10. (D		(D)	80.	(C)	115.	(C)
11. (C		(B)	81.	(C)	JCE 116.	(C)
12. (C	The second secon	(C)	82.	(4)	117.	(B)
13. (D		(B)	83.	(D)	118.	(B)
14. (D		(A)	84.	(C)	119.	(B)
15. (D		(C)	85.	(C) (A) (D)	120.	(B)
16. (D		(D)	86.	(C)		
17. (D		(C) (C	87.	(C)		
18. (B		(B)	88.	(D)		
19. (B		(A)	89.	(C)		
	55.	(A)	90.	(B)		
21. (C		(B)	91.	(A)		
22. (B		(B)	92.	(C)		
23. (D		(B)	93.	(A)		
24. (A		(C)	94.	(D)		
25. (B	*	(D)	95.	(B)		
26. (C		(D)	96.	(B)		
27. (A		(B)	97.	(C)		
28. (A 29. (A		(A) (B)	98. 99.	(C) (D)		
29. (A 30. (C		(B) (C)	100.	(D) (C)		
31. (A		(B)	100.	(C) (C)		
31. (A 32. (D		(A)	101.	(C) (A)		
33. (D	·	(A) (D)	102.	(A) (D)		
34. (B		(C)	103.	(C)		
35. (A		(C)	105.	(C) (D)		
33. (A	70.	(0)	103.	(1)	I	

Sample Paper - 2 Year Program

Admission & Scholarship Test | Medical

Duration: 3.0 Hrs Maximum Marks: 480

PAPER SCHEME:

- The paper contains 120 Objective Type Questions divided into four sections: Section I, Section II, Section III and Section IV
- **Section I** contains 35 **Multiple Choice Questions (1-35)** based on Physics. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct**.
- Section II contains 35 Multiple Choice Questions (36-70) based on Chemistry. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- Section III contains 35 Multiple Choice Questions (71-105) based on Biology. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- **Section IV** contains **15 Multiple Choice Questions (106-120)** based on Mental Aptitude. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE** is correct.

MARKING SCHEME:

• **Section I, II, III and IV**: For each question, **4 marks** will be awarded for correct answer and **-1 negative marking** for incorrect answer.

GENERAL INSTRUCTIONS:

- For answering a question, an **ANSWER SHEET (OMR SHEET)** is provided separately. Please fill your **Name, Roll Number, Seat ID, Date of Birth** and the **PAPER CODE** properly in the space provided in the **ANSWER SHEET.** IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

PART - I (PHYSICS)

- 1. If the length and cross section of a wire are doubled, then
 - (A) Its resistance will increase two times
- Its resistance will decrease four times
- **(C)** It resistance will increase four times
- **(D)** Its resistance will remain unchanged
- 2. Electric currents with certain values are flowing in various branches of the following circuit: The value of current 'I' in the circuit is

- (A) 1.9 A
- 0.2 A
- **(C)** 0 A

3. Find the equivalent resistance between A and B

- $3/2 \Omega$ (A)
- **(B)** $4/3 \Omega$
- **(C)** $2/3 \Omega$
- **(D)** $3/4 \Omega$
- 4. Two bulbs (of 100 W and 200 W) have been connected in parallel and 200 V AC fed to them from common part. Which bulb will have more current flowing through it?
 - Bulb of 200 W (A)

Both will have same current **(B)**

(C) Bulb of 100 W

- **(D)** Unpredictable
- Two resistors of 6Ω and 9Ω are connected in series to a 120 V source. The power consumed by the 6Ω 5. resistor is
 - (A) 384 W
- **(B)** 576 W
- **(C)** 1500 W
- 1800 W **(D)**
- 6. Through the tube of radius R, $10,000 \alpha$ -particles pass per minute. The value of electric current through the tube is (approximately)
 - $0.5 \times 10^{-12} \,\mathrm{A}$ (A)
- **(B)** $2 \times 10^{-12} \text{ A}$
- (C) $0.5 \times 10^{-18} \text{ A}$
- **(D)** $2 \times 10^{-18} \text{ A}$
- 7. Equivalent resistance that cannot be obtained by the combination of three resistance of 4Ω each is
 - 12Ω **(A)**
- $1.33~\Omega$ **(B)**
- (C) 6Ω
- **(D)** 3Ω
- 8. When a wire of length 50 cm and cross section area 1 mm² is connected with a battery of 2 volt, a current of 4 amp flows in it. The resistivity of the wire is
 - 2×10^{-7} ohm m (B) 5×10^{-7} ohm m (A)
- (C) 4×10^{-6} ohm m
- **(D)** 1×10^{-6} ohm m

9.	A Tra	ansformer						
	(A)	converts AC to	DC					
	(B)	converts DC to	AC					
	(C)	increases or de	crease	es (step up or step	down) A	C voltage		
	(D)	increases or de	crease	es (step up or step	down) D	C voltage		
10.	Magn	netic Field inside a	long	Solenoid is	_ .			
	(A)	radial	(B)	uniform	(C)	Both (A) and (B)	(D)	circular
11.	The F	Right Hand Thuml	b rule	(Grip rule) is used	d to find			
	(A)	force on a char	ged pa	article passing thr	ough the	magnetic field.		
	(B)	force on a curr	ent car	rrying conductor j	placed in	a magnetic field.		
	(C)	direction of inc	duced	current.				
	(D)	direction of B	around	d a current carryin	g straigh	conductor.	71	
12.	The d	lirection of magne	etic lin	es of force produc	ced by pa	ssing a direct currer	nt in a c	conductor is:
	(A)	perpendicular t	o the	line conductor and	d coming	outwards	E 198	
	(B)	parallel to cond	luctor		(0,)			
	(C)	surrounding the	e cond	luctor and of circu	ılar natur	e	NC	
	(D)	perpendicular t	o the	conductor and con	ning inw	ards UNDATIO		
13.	Force	e acting on a statio	nary o	charge Q in the m	agnetic fi	eld B is		
	(A)	BQV	(B)	BV/Q ED	(C)	zero	(D)	BQ/V
14.	Whice the sa	h of the following ame direction?	state	ment is not correc	t about tv	vo parallel conducto	ors carr	ying equal currents in
	(A)	Each of the cor	nducto	ors will experience	e a force.			
	(B)	The two condu	ctors	will repel each oth	ner.			
	(C)	There are conc	entric	lines of force aro	und each	conductor.		
	(D)	Each of the con	nducto	ors will move if no	ot prevent	ed from doing so.		
15.	A ma	gnetic field may:						
	(A)	change the velo	ocity o	of a charged partic	ele			
	(B)	change the spe	ed of	a charged particle				
	(C)	change the kine	etic er	nergy of a charged	particle			
	(D)	stop a moving	charge	ed particle				
16.	In an	Electric Motor, th	ne dire	ection of current in	the coil	changes once in eac	ch;	
	(A)	two rotations	(B)	one rotation	(C)	half rotation	(D)	one-fourth rotation
17.	Most	of the energy we	use or	riginally comes fro	om			
	(A)	the sun	(B)	the air	(C)	the soil	(D)	the oceans
18.	Electi	rical energy can b	e prod	luced from:				
	(A)	mechanical end	ergy		(B)	chemical energy		
	(C)	radiant energy			(D)	all of the above		

19.	Coal, petroleum, natural gas, and propane are fossil fuels. They are called fossil fuels because:										
	(A)	they are burne	ed to re	lease energy and t	hey cause	e air pollution					
	(B)	they were form of years ago	med fro	om the buried rem	ains of pl	ants and animals	s that lived	hundreds of millions			
	(C)	they are non-	enewal	ole and will run or	ut (D)	they are mixed	with fossi	ls to provide energy			
20.	Gasol	ine is produced	by refin	ning which fossil t	fuel?						
	(A)	natural gas	(B)	coal	(C)	petroleum	(D)	propane			
21.	_	ne is used instead d of natural gas		tural gas on many	farms an	d in rural areas.	Why is pr	opane often used			
	(A)	its safer	(B)	its portable	(C)	its cleaner	(D)	its cheaper			
22.	What	sector of the Inc	lian ecc	onomy consumes i	most of th	ne nation's petro	leum?				
	(A)	residential	(B)	commercial	(C)	industrial	(D)	transportation			
23.	Natur	al gas is transpo	rted ma	inly by			Tib				
	(A)	pipelines	(B)	trucks	(C)	barges	(D)	all three equally			
24.	Globa	al warming focus	ses on a	n increase in the l	evel of w	hich gas in the a	atmosphere	2?			
	(A)	ozone	(B)	sulfur dioxide	(C)	carbon dioxide	(D)	nitrous oxide			
25.	1	C 1						reflected. Then the			
	(A)	45°	(B)	130° ay and reflected ra	(C)	150°	(D)	90°			
26.	The a	ngle between in	eident r	ay and reflected ra	ay is 70°.	What is the ang	le of incide	ence?			
	(A)		(B)	30°	(C)	55°	(D)	35°			
27.	_	plane mirrors are	e incline	ed to each other at	an angle	. A ray of light i	s reflected	first at one mirror and			
	(A)	the total devia	ition of	ray is 360°							
	(B)	the total deviation first mirror	ition pr	oduced by system	of mirro	rs is dependent o	on the angl	e of incidence on the			
	(C)	the total devia are inclined to	•	• •	of mirro	rs depends upon	the angle	which the two mirror			
	(D)	the total devia	ition of	ray is always 90°	•						
28.	Refra	ction of light tak	es plac	e when light trave	els from						
	(A)	vacuum into v	water o	nly	(B)	air into water	only				
	(C)	rarer to dense	r mediu	ım	(D)	any medium to	water onl	у			
29.	The d	iameter of spher	ical mi	rror in which refle	ection tak	es place is called	1				
	(A)	radius of curv	ature		(B)	centre of curva	iture				
	(C)	linear aperture	e.		(D)	focal length.					
30.	The in	mage formed by	a conv	ex mirror of real of	bject is la	arger than the ob	ject. This	happen			
	(A)	When $u < 2f$			(B)	When $u > 2f$					
	(C)	for all values	of u		(D)	for no value of	u				

31.	When o	object is placed b	etween	principal focus and	l pole	for a concave mirror	the in	nage is formed at
	(A)	pole			(B)	principal focus		
	(C)	center of curvat	ure		(D)	behind the mirror		
32.	The lin	e passing throug	h pole a	and center of curvat	ure is			
	(A)	pole	(B) 1	principal axis	(C)	center of curvature	(D)	radius of curvature.
33.	A perso power	on cannot see dis	tinctly o	objects kept beyond	l 2 m.	This defect can be co	orrecte	d by using a lens of
	(A)	+ 0.5 D	(B) -	– 0.5 D	(C)	+ 0.2 D	(D)	– 0.2 D
34.		ers written in his	text bo	ok. Which of the fo	llowin	itten on the blackboard statements is corre		is not able to read
	(A)	•	•	yes has receded awa	•			
	(B)	•	•	yes has come closer		n		
	(C)	The far point of	f his eye	es has come closer t	o him		11	
	(D)	The far point of	f his eye	es has receded away		mand	111	
35.	inciden	at on the prism as from the top corr	shown		of the	ientations. A narrow e following cases, af		
		(i)	(ii))	(iii)	(iv)		
	(A)	(i)	(B) ((ii)	(C)	(iii)	(D)	(iv)
				PART - II (CHI	EMIST	RY)		
26	. 1						*11	TTI 1
36.	A solut (A)	NaCl	(B)	egg shells to given a	a gas t (C)	hat turns lime-water LiCl	(D)	KCl
37.	we take		me solu	tion of NaOH, the a	•	eutralized by 8 mL of HCl solution (th	_	ven solution of HCl. If e solution as before) 16 ml
20	XX71 · 1	C.1	C 1		,.	· 1· 0		
38.	Which (A)	antibiotic	(B)	icines is used for tre analgesic	(C)	antacid	(D)	antiseptic
39.	Which (A)	of the following H ₂	gases is	s evolved when bak	ing so	da reacts with an aci	(D)	CH ₄
					(0)	202	(D)	C114
40.	Which	of the following	is not a	n acidic salt?				
	(A)	baking soda			(B)	ammonium chlor		
	(C)	copper sulphate	:		(D)	ammonium nitrat	e	

41.	The a	cid having high	est H ⁺ io	n concentration	is one with				
	(A)	pH = 7.0	(B)	pH = 1.2	(C)	pH = 2.3	(D)	pH = 8.2	
42.	Aque	ous solution of	which of	the following tu	ırns blue lit	mus red?			
	(A)	NaNO ₃	(B)	$CuSO_4$	(C)	NH_4OH	(D)	CH ₃ COON	Na .
43.	The a	cid produced in	our ston	nach is					
	(A)	HC1	(B)	H_2SO_4	(C)	HNO_3	(D)	CH ₃ COOH	[
44.	Whic	h of the followi	ng is a w	eak acid?					
	(A)	HC1	(B)	H_2CO_3	(C)	H_2SO_4	(D)	HNO_3	
45.	Whic	h one of the fol	lowing is	a strong base?					
	(A)	NH ₄ OH	(B)	$Ca(OH)_2$	(C)	$Mg(OH)_2$	(D)	КОН	
46.	Ethan	oic acid is obta	ined by the	he of eth	nanol				
	(A)	combination	(B)	oxidation	(C)	reduction	(D)	substitution	1
47.	The h	nighest boiling p	oint is of	f		mall	1086		
	(A)	ethane	(B)	ethanol	(C)	propanone	VCE (D)	ethanoic ac	id
48.	In the	reaction			125	ses	ON.		
	CH ₃ C	CH ₂ OH hot cond	$c.H_2SO_4 \rightarrow 0$	$CH_2 = CH_2 + H_2$ $MEDIC$	0	INDAT	101		
	here o	conc. H ₂ SO ₄ ac	ets as		MIF	OUN			
	(A)	an oxidizing	agent	MEDIC	(B)	provides acid	ic medium		
	(C)	a dehydrating	g agent	EIMI	(D)	a drying ager	ıt		
49.	Glaci	al acetic acid is	a						
	(A)	frozen acetic	acıd		(B)	5-8% of solut	tion of acet	ic acid in wat	er
	(C)	mixture of ac	cetic acid	and alcohol	(D)	mixture of ac	etic acid ai	nd benzene	
50.			U	ons is called sap					
	(A)	, and the second		$H \rightarrow CH_3COOC$					
	(B)	-	_	$O_3 \rightarrow 2CH_3COC$	_	_			
	(C)	, <u> </u>	J	$\xrightarrow{\mathrm{H}} \mathrm{C}_2\mathrm{H}_5\mathrm{OH} + \mathrm{O}_2$	CH ₃ COO ⁻ N	Na ⁺			
	(D)	CH ₃ CH ₂ OH	$+[O] \rightarrow$	CH ₃ COOH					
51.			reacts wit	th ethanol, a swe	eet smelling	g product is forn	ned. The fu	nctional group	p in the
	produ		(D)	Irotomo	(C)	alaahal	(D)	aatan	
	(A)	aldehyde	(B)	ketone	(C)	alcohol	(D)	ester	
52.		-		ntains hexagonal	-		(D)	1	
	(A)	diamond	(B)	fullerene	(C)	graphite	(D)	coal	
53.		following equa		GO 11 0 1	1 2==				
				$CO_2 + H_2O$ the			(D)	4	
	(A)	1	(B)	2	(C)	3	(D)	4	

54.		equation	10.)	Inio All o		0.77					
		$XHNO_3 \rightarrow Cu(N)$		$YNO_2 + 2H_2O$							
	(A)	3 and 1 respec	•		(B)	8 and 6 respec	•				
	(C)	4 and 2 respec	uvery		(D)	7 and 1 respec	uvely				
55.	In the	e equation, NaOH	+ HNC	$O_3 \rightarrow NaNO_3 + I$	H ₂ O, HNO ₃	is acting as					
	(A)	an oxidizing a	gent		(B)	an acid					
	(C)	a reducing age	ent		(D)	a dehydrating	agent				
56.	Whic	h of the following	g is not	a balanced equa	tion?						
	(A)	$Ca(OH)_2 + CO$	$O_2 \rightarrow C$	$aCO_3 + H_2O$							
	(B)	(B) Fe + CuSO ₄ \rightarrow FeSO ₄ + Cu									
	(C)	C) $KClO_3 \xrightarrow{\Delta} 2KCl + 2O_2$									
	(D)	$3BaCl_2 + 2H_2$	$PO_4 \rightarrow$	$Ba_{3}(PO_{4})_{2} + 6F$	HCl						
		2 3	·	3 \ 1/2			TIL				
57.		h of the statemen	ts about	the reaction give	ven below i	is/are incorrect?	0.1				
		$+ C \rightarrow Pb + CO_2$			AN C	all a civi	CE 1980				
	(i)	lead oxide is g			(ii)	carbon is getti		ed			
	(iii)	carbon dioxide			(iv)	lead is getting	(D)	all of these			
	(A)	(i) and (ii)	(B)	(i) and (iii)	(C)	(iii) and (iv)	(D)	an of these			
58.	Fe ₂ C	$O_3 + 2AI \rightarrow AI_2O_3$ bove reaction is a combination redecomposition	+2Fe		ALIF						
	the al	pove reaction is a	n exam	ole of a							
	(A)	combination re	eaction	Elm	(B)	double displac	ement rea	action			
	(C)	decomposition	reaction	n	(D)	displacement i	reaction				
59.	A stu	dent added dilute	HCl to	a test tube conta	aining zinc	granules and ma	de follow	ing observations:			
	(i)	the zinc surfac	e becan	ne dull and black	k						
	(ii)	a gas evolved	which b	ournt with a pop	sound						
	(iii)	the solution re	mained	colourless							
	The c	correct observatio	n are								
	(A)	(i) and (ii)	(B)	(i) and (iii)	(C)	(ii) and (iii)	(D)	(i), (ii) and (iii)			
60.	Meno	deleev classified e	elements	s in:							
	(A)	increasing ord	er of ato	omic number.	(B)	increasing ord	er of aton	nic masses.			
	(C)	decreasing ord	ler of at	omic masses.	(D)	decreasing ord	er of ator	nic number.			
61.	A dil	ute solution of so	dium ca	rbonate was add	ded to two	test tubes one cor	ntaining d	il. HCl (1) and the			
		containing dilute					Č	. /			

- - a brown coloured gas liberated in test tube A **(A)**
 - a brown coloured gas liberated in test tube B **(B)**
 - **(C)** a colourless gas liberated in test tube A
 - a colourless gas liberated in test tube B **(D)**

62.	On moving from top to bottom in a group, in the periodic table, valency										
	(A)	increase			(B)	decreases					
	(C)	remains same			(D)	first increases, t	hen decr	reases			
63.	The c	orrect formula fo	or rust is								
	(A)	Fe_2O_3	(B)	Fe_3O_4	(C)	$Fe_2O_3 \cdot xH_2O$	(D)	$Fe_3O_4 \cdot xH_2O$			
64.	Alum	inium is extracte	d by								
	(A)	heating sodiur	n alumin	um silicate to	o high temper	ature					
	(B)	treating cryoli	te with so	odium hydro	xide solution	under pressure					
	(C)	heating alumin	nium oxi	de with coke	in a furnace						
	(D)	the electrolysi	s of molt	en alumina							
65.	When 'x' is	iron filings are l	heated in	a steam of d	ry hydrogen o	chloride, the comp	ound for	rmed is FeCl _x where			
	(A)	1	(B)	2	(C)	3	(D)	4			
66.	In thr	ee oxides of iron	Fe O .	. x and v has	ve the values	amano					
			x y	, 11 11111) 111	: 4V	SINC	E 1986				
	(A)	x y x y 1 1 3 2	4 3		1102	se5 5"					
	1 1	1 1 2 3	3 4		Clas	ATI	NC				
	(B)		2 0			OUNDA.					
	(C)	3 5 2 1	3 2		CALIF						
	(D)	5 3 1 2	2 3	IMED	1CP	oundation					
67.	Which	h of the followin	g stateme	ents about irc	on is not true?						
	(A)	the metal is m	agnetic								
	(B)	iron forms an	alloy call	led steel							
	(C)	iron dissolves	•	n concentrate	ed nitric acid						
	(D)	cast iron is bri	ttle								
68.		•				epared solution of					
			•		which on stan	ding becomes red	dish-bro	wn because			
	(A)	ferric salts are									
	(B)	the mixture be		-							
	(C)	ferrous hydrox		-		6 1 1 1 1					
	(D)	green terrous	nyaroxia	e oxidizes to	readish-brow	n ferric hydroxide	e in air				
69.	•	ype of iron produ	iced in th	e blast furna							
	(A)	pig iron			(B)	wrought iron					
	(C)	stainless steel			(D)	steel					
70.	The re	educing agent us	ed in the	blast furnace	e to reduce Fe	e_2O_3 to Fe is					
	(A)	coke			(B)	carbon					
	(C)	lime stone			(D)	carbon monoxid	le				

(A)

(C)

Water

Light energy

				PART - II	I (BIOL	OGY)		
71.	The co	apillaries are joir	nt to for	rm				
/1.	(A)	Arterioles	(B)	Arteries	(C)	Veins	(D)	Venules
72.	, ,	a fuam vyhiah fih		, haa haan mamaay		allad	. ,	
12.	(A)	Blood	(B)	n has been remov Serum	(C)	Lymph	(D)	Tissue fluid
					. ,	Lympn	(D)	11354C Hala
73.		1 2 3		blood clotting ar		т 1 ,	(D)	D1 . 1 .
	(A)	Erythrocytes	(B)	Leucocytes	(C)	Lymphocytes	(D)	Platelets
74.	At hig	h altitude, in hui		_				
	(A)	Decrease in nu	ımber (of RBCs	(B)	Increase in number	of RBC	Cs
	(C)	Decrease in nu	ımber (of WBCs	(D)	Increase in number	of WB	Cs
75.	The ep	oiglottis guards t	he ope	ning of				
	(A)	Oesophagus			(B)	Eustachian tubes	111	
	(C)	Larynx			(D)	Trachea	"	
76.	Excha	nge of gases bet	ween a	lveolar air and alv	veolar o	capillaries occurs by	E 198	6
	(A)	Osmosis	(B)	Diffusion	(C)	Active transport	(D)	Reverse osmosis
77.	A bios	enhara racarva, a	oncory	es and preserves	1a	SSUDATI	No	
<i>,</i> , ,	(A)	wild animals	(B)	wild land	(C)	natural vegetation	(D)	All of these
					(0)	natural vegetation	(D)	All of these
78.	Lungs	have a large nur	mber o	f alveoli for	, AL			
	(11)	Widilitalilling a	spons.	y texture and prop	or smap	e		
	(B)		-	r diffusion of gase	es			
	(C)	More nerve su		1				
	(D)	More space to	ıncrea	se volume of insp	irea air			
79.	Rate o	of photosynthesis	s is dep	endent on:				
	(A)	Light quality	(B)	Light intensity	(C)	Duration of light	(D)	All of these
80.	A plar	nt is kept in a dan	k cupb	oard for about 48	hours	before conducting an	y exper	iment on
	photos	synthesis to						
	(A)			from the leaves	(B)	Remove starch from	_	
	(C)	Ensure that no	photo	synthesis occurs	(D)	Ensure that the leav	es are f	ree from starch
81.	If the	rate of respiratio	n beco	mes more than the	e rate o	f photosynthesis, plan	nts will	
	(A)	Continue to liv	ve, but	will not be able to	store	food		
	(B)	Be killed insta	ntly					
	(C)	`	_	ly because more e	••	will be available		
	(D)	Stop growing	and gra	adually die of star	vation			
82.	During	g photosynthesis	, oxyge	en comes from				

(D)

(B) Carbon dioxide

Energy carbon dioxide and water

83.	Anim	als eat food						
	(A)	To get energy			(B)	For repair of the bo	dy	
	(C)	To get resistar	nce aga	ainst diseases	(D)	All the above		
84.	Whic	h blood vessel ta	kes blo	ood away from the	kidne	<i>y</i> ?		
	(A)	Renal portal v	ein		(B)	Renal vein		
	(C)	Afferent arteri	ole		(D)	Efferent arteriole		
85.	Glom	erulus and Bown	nan's c	capsule constitute				
	(A)	Blood vessels			(B)	Malpighian body		
	(C)	Green gland			(D)	Malpighian tubule		
86.	Maxi	mum amount of v	vater f	From the glomerul	ar filtra	te is absorbed in		
	(A)	Descending lin	nb of	loop of Henle	(B)	Ascending limb of	loop of	Henle
	(C)	Distal convolu	ited tu	bule	(D)	Proximal convolute		
87.	Excre	etion commonly i	nvolve	es		amang	111	
	(A)	Removal of al	l by-pı	roducts during cat	abolisn	amall'		6
	(B)	Removal of by	-prod	ucts during anabo	lism	13	E 198	
	(C)	Removal of ni	trogen	ous waste	(D)	All the above		
88.	Flame	e cells are the exc	retory	organs in	://3	SATI	ON	
	(A)	Prawn	(B)	Planaria	(C)	Silver fish	(D)	Hydra
89.	Cytok	kinins are mostly	produ	ced in	AL			
	(A)	Ripened fruits	(B)	ced in Seeds EDIO	(C)	Lateral buds	(D)	Young leaves
90.	Plant	hormone involve	ed in b	reaking dormancy	of seed	ds is		
	(A)	Ethylene	(B)	Gibberellin	(C)	Auxin	(D)	Cytokinin
91.	Type	of movement sho	own by	touch me not (M	(imosa)	plant		
	(A)	Phototropism	(B)	Hydrotropism	(C)	Nastic movement	(D)	Geotropism
92.	Flood	ls can be prevente	ed by					
	(A)	afforestation	(B)	cutting the fores	sts (C)	tilling the land	(D)	removing the top soil
93.	Plant	hormone present	in me	ristematic tissue is	S			
	(A)	Ethylene	(B)	Gibberellin	(C)	Abscisic acid	(D)	Cytokinin
94.	Whic	h among the follo	owing	disease is not sexu	ually tra	ansmitted?		
	(A)	Syphilis			(B)	Tuberculosis		
	(C)	HIV-AIDS			(D)	Gonorrhoea		
95 .	Name	the structure for	med d	ue to fertilization:				
	(A)	Gametes	(B)	Sperms	(C)	Zygote	(D)	Ovum
96.	Spore	formation occur	s in:					
	(A)	Yeast	(B)	Hydra	(C)	Amoeba	(D)	Rhizopus

97.	End of	reproductive cap	pacity	in woman at the ag	ge of 4	5-55 years is known as	s:	
	(A)	Menopause	(B)	Puberty	(C)	Menarche	(D)	Gestation
98 .	Fusion	of a male game	te with	•	form	of zygote is termed as:	•	
	(A)	Pollination	(B)	Fertilization	(C)	Parthenogenesis	(D)	Gestation
99.	Who, a	mong the follow	ing, is	called father of ge	enetics	:		
	(A)	Mendel	(B)	de Vries	(C)	Darwin	(D)	Lamarck
100.	What s	hall be the ratio	in F2 g	generation in dihyb	oridero	ss:		
	(A)	3:1	(B)	1:2:1	(C)	9:3:3:1	(D)	1:1
101.	If a plantlaw of:	nt is hybrid tall a	and has	s produced tall as	well as	dwarf plants in F2 ge	neratio	on, it represents the
	(A)	Dominance			(B)	Law of segregation		
	(C)	Independent as	sortme	ent	(D)	Free recombination	2	
102.	In hum	an beings, male	is			and		
	(A)	Heterogametic			(B)	Homogametic	. 1986	
	(C)	Either heteroga	metic	or homogametic	(D)	Both heterogametic a	nd hor	nogametic
103.	Of the 2	23 pairs of chror	nosom	es in human cells,	how r	nany autosomes are pr	esent i	n female?
	(A)	23 pairs	(B)	22 pairs	(C)	20 pairs	(D)	only one pair
104.	If energ	gy received by pl	lants is	s 2000J, how much	ı energ	gy will be received by	tertiary	consumer?
	(A)	2000 J	(B)	200 J EDIC	(C)	20 J	(D)	2 J
105.	Which	rays strike on ea	rth du	e to depletion of or	zone la	ayer?		
	(A)	Ultraviolet	(B)	Infrared	(C)	Visible light	(D)	X-rays
				PART - IV (ME	NTAL	ABILITY)		
106.	I am the	•	paren	ts. The man in pic	ture oi	n the wall is my Father	's son	. Who is he in the
	(A)	Himself	(B)	Father	(C)	Brother	(D)	None of these
Directi	ons for	Q. Nos. 107 or 1	108: S	tudy the given inf	forma	tion and answer the f	ollowi	ng questions.
	•					B are a married couple		-
D is the	-	on of C, who is th	he brot	ther of A. E is the s	sister o	of D. B is the daughter-	-in-law	of F, whose husband
107.	Who is	C to B?						
	(A)	Brother			(B)	Brother-in-law		
	(C)	Nephew			(D)	Son-in-law		
108.		any male memb	ers are	there in the family	y?			
	(A)	One			(B)	Two		
	(C)	Three			(D)	Four		

Directions for Q. Nos. 109 or 110: Study the given information and answer the following questions.

Five persons are standing in a queue. One of the two persons at the extreme ends is a Professor and the other is a Businessman. An Advocate is standing to the right of a student. An Author is to the immediate left of the Businessman. The Student is between the Professor and Advocate.

109.	Counti	ng from the left	the Au	thor is at which pl	ace?			
	(A)	First	(B)	Second	(C)	Third	(D)	Fourth
110.	Which	of the following	is in t	he exactly middle	of the	queue?		
	(A)	Professor	(B)	Advocate	(C)	Student	(D)	Businessman
Directi	ions (Q.	Nos. 111): Read	d the s	statements given l	oelow	and answer.		
(i)	A, B ar		ys wh	ile R, S and T are	three g	girls. They are sitting s	uch tha	at the boys are facing
(ii)	A and	R are diagonally	oppos	site to each other.				
(iii)	C is no	t sitting at any of	f the e	nds.		20	11	
(iv)	T is lef	t to R but opposi	te to C	C.		amalli	aet	
111.	Who is	s sitting opposite	to B?	11	4	a SINCE	= 1400	
	(A)	A	(B)	C	(C)	amand ases since	(D)	S
112.	you tur		- A	to your left and wa	aik 10i	n, then turned to your over 25 m. Now in white South-West North-West	ieit an	d walk 10 m and now
A and l	B are go	Q. Nos. 113 to 1 od in Cricket and	115: S d Hocl	tudy the given inf	f orma ood in	tion and answer the f Chess and Badminton ifting.		~ -
113.		re good in Cricke						
	(A)	A, B, F	(B)	F, E, C	(C)	D, E, F	(D)	A, B, C
114.	Who is (A)	s not playing Cric C	(B)	D	(C)	E	(D)	F
115.	Who is (A)	s not playing Bas C		F	(C)	E	(D)	D
116.		oys took part in a t but behind Mol		•	e Moh	it but behind Gaurav.	Ashish	n finished before
	(A)	Raj	(B)	Gaurav	(C)	Mohit	(D)	Ashish
117.	0, 3, 8,	15, 24, 35, 48			(C)	56	(D)	62
	(A)	51	(B)	55	(C)	56	(D)	63

- 118. If the word 'THREAD' is written in a code as 'SIQFZE', how would 'NUMBER' be written in that code?
 - **(A) MVLCDS**
- (B) OTNAFQ
- (C) MTLAFQ
- (D) OVNCDS
- 119. Which of the following diagrams indicates the best relation between Bulb, Lamp and Light?

(C)

- 120. 'Calf' is related to 'Cow' in the same way as 'Kitten' is related to:
 - **(A)** Deer
- (B) Bear
- **(C)** Cat
- (D) Duck

% জ End of Sample Paper | 2 Year Medical Paper III ও ও ও

Answers to Sample Paper | 2 Year Medical

Sample Paper - III

PHYSICS	CHEMISTRY	BIOLOGY	(MENTAL ABILITY)
1. (D)	36. (B)	71. (D)	106. (A)
2. (C)	37. (D)	72. (B)	107. (B)
3. (B)	38. (C)	73. (D)	108. (C)
4. (A)	39. (C)	74. (B)	109. (D)
5. (A)	40. (A)	75. (D)	110. (B)
6. (C)	41. (B)	76. (B)	111. (C)
7. (D)	42. (B)	77. (D)	112. (D)
8. (D)	43. (A)	78. (B)	113. (D)
9. (C)	44. (B)	79. (D)	114. (D)
10. (B)	45. (D)	80. (D)	CE 1986 114. (D)
11. (D)	46. (B)	(C) \$1. (C) 5 511	116. (B)
12. (C)	47. (D)	82. S(A) 83. (D) 84. (B)	117. (D)
13. (C)	48. (C)	83. (D)	118. (A)
14. (B)	49. (A)	84. (B)	119. (C)
15. (A)	50. (C)	85. (B)	120. (C)
16. (C)	51. (D) 52. (C) (E)	86. (D)	
17. (A)	52. (C)	87. (C)	
18. (D)	52. (C) 53. (B)	88. (B)	
19. (B)	54. (C)	89. (D)	
20. (C)	55. (B)	90. (B)	
21. (B)	56. (C)	91. (C)	
22. (D)	57. (C)	92. (A)	
23. (A)	58. (D)	93. (D)	
24. (C)	59. (C)	94. (B)	
25. (C)	60. (B)	95. (C)	
26. (D)	61. (C)	96. (D)	
27. (C)	62. (C)	97. (A)	
28. (C)	63. (C)	98. (B)	
29. (C)	64. (D)	99. (A)	
30. (D)	65. (B)	100. (C)	
31. (D)	66. (B)	101. (B)	
32. (B)	67. (C)	102. (A)	
33. (B)	68. (D)	103. (B)	
34. (A)	69. (A)	104. (D)	
35. (B)	70. (D)	105. (A)	

VMC CENTERS ACROSS INDIA

