

HEAD OFFICE: Aggarwal Corporate Heights, 3rd Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi. Ph.: (011) 45221191-93

Sample Paper - 3 Year Program

Admission & Scholarship Test

Duration : 3.0 Hrs

Maximum Marks: 305

PAPER SCHEME :

- The paper contains 60 Objective Type Questions divided into three sections: Section I, Section II and Section III.
- Section I contains 10 Multiple Choice Questions (1-10) based on Mental Aptitude. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- Section II contains 35 Multiple Choice Questions (11-45) based on Mathematics. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- Section III contains 15 Multiple Choice Questions (46-60) based on Science. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

MARKING SCHEME :

• Section I : For each question, 4 marks will be awarded for correct answer and -1 negative marking for incorrect answer.

FOUNT

- Section II : For each question, 5 marks will be awarded for correct answer and -1 negative marking for incorrect answer.
- Section III : For each question, 6 marks will be awarded for correct answer and -1 negative marking for incorrect answer.

GENERAL INSTRUCTIONS :

- For answering a question, an **ANSWER SHEET (OMR SHEET)** is provided separately. Please fill your **Name**, **Roll Number**, **Seat ID**, **Date of Birth** and the **PAPER CODE** properly in the space provided in the **ANSWER SHEET.** IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

SUGGESTIONS:

- Before starting the paper, spend 2-3 minutes to check whether all the pages are in order and report any issue to the invigilator immediately.
- Try to attempt the Sections in their respective order.
- Do not get stuck on a particular question for more than 3-4 minutes. Move on to a new question as there are 60 questions to solve.

SECTION - I [MENTAL APTITUDE]

1. Three out of the four options are same in a certain way and so form a group. Find the odd option that does not belong to the group. 12:42 **(D)** 9:45 **(A)** 3:15 6:30 **(C) (B)** 2. The 2 groups of letters on the left have some relationship between them. Replace the '?' with a group of letters so that the 2 groups of letters on the right have the same relationship. *EJO*:*GNU*::*FLR*:? HPY**(A) (B)** GNX **(C)** GPUHPX**(D)** 3. What is the next term in the given series? 97, 103, 109, 127, 156 **(B)** 150 137 (A) 131 **(C) (D)** Which of the given group of letters will complete the given series ? 4. ALCFOUNT a cc bbc a c (A) accb **(B)** abcb **(D)** abba A cube of side 4cm is painted black on the pair of one opposite surfaces, blue on the pair of another 5. opposite surfaces and red on the remaining pair of opposite surfaces. The cube is now divided into smaller cubes of equal side of 1cm each. How many smaller cubes have atleast 2 sides painted ? **(C) (A)** 16 **(B)** 24 32 **(D)** 36 6. 4 b С а 3 4 1 8 а 4 3 1 С 8 9 1 а 0 7 1 С 0 4 What is *b*? **(A)** 3 **(B)** 4 **(C)** 5 **(D)** 6 What is the next term in the given series 11, 13, 17, 19,? 7. **(A)** 23 **(B)** 25 **(C)** 27 **(D)** 30 8. What is the next term in the given series 27, 64, 125, 216,? 300 **(A) (B)** 299 **(C)** 343 **(D)** 450

18.	The va (A)	llue of <i>m</i> for whi 10	ch x - 2 (B)	is a factor of the -10	e polyno (C)	$\begin{array}{c} \text{mial} x^4 - x^3 + 2. \\ 4 \end{array}$	$\begin{array}{c} x^2 - mx \\ \textbf{(D)} \end{array}$	+4 is: 9
19.	The ex (A) (C)	spression $(a-b)^2$ 3abc 3(a-b)(b-c)		$(c)^{3} + (c-a)^{3}$ is		b: $3a^{3}b^{3}c^{3}$ $[a-(b+c)]^{3}$		
20.	When	$x^3 + 2x^2 + 2x -$	4 and x	$x^{3} + 2x^{2} - 3x + 6$	are div	vided by $x-2$, the formula of the second s	ne rema	inder are R_1 and R_2
						for R_1 and R_2 ?		
	(A)	$R_1 = 2R_2$	(B)	$2R_1 = R_2$	(C)	$R_1 = R_2$	(D)	$R_1 + R_2 = 0$
21.	If (x – (A)	a) is a factor of : 0	$x^3 - 3x^2$ (B)	$a^{2}a + 2a^{2}x + b$, the 2	en the va (C)	alue of <i>b</i> is: 1	(D)	3
22.	If two (A)	lines intersected Equal	by a tra (B)	nsversal, then ea Complementa		of corresponding Supplementar	-	so formed is: None of these
23.	The an (A)	gle between the acute angle	bisector (B)	rs of two adjacer right angle	nt supple (C)	ementary angles i obtuse angle	s: (D)	None of these
24.	correct (A) (B)	given figure, wh t inequality? $c^{\circ} < a^{\circ} < e^{\circ} < b^{\circ}$ $c^{\circ} < a^{\circ} < e^{\circ} < c^{\circ}$ $a^{\circ} < c^{\circ} < e^{\circ} < b^{\circ}$ $c^{\circ} < a^{\circ} < d^{\circ} < d^{\circ}$ adjoining figure	$b^{\circ} < d^{\circ}$ $l^{\circ} < e^{\circ}$	Vie	ya asa		₫° 70°	<u>e°</u>
25.	angles (A)	adjoining figure of $\triangle ABC$. The $90^{\circ} - \frac{1}{2} \angle A$ $180^{\circ} - \frac{1}{2} \angle A$	n ∠ <i>BO</i> (B)	C is: $90^{\circ} + \frac{1}{2} \angle A$	sectors of	of external	P P	A D_1 A Q Q
26.	The va	lue of polynomi	al $5x - 4$	$4x^2 + 3$, when x	= -1 is :			
	(A)	-6	(B)	6	(C)	2	(D)	-2
27.		he adjoining fig	ure AB	DE . Then the	value of	x° is:		$D_{P_{05^\circ}} \rightarrow E$
	(A) (D)	25°					в 9	50
	(B) (C)	35° 45°				A>	120°	
	(C) (D)	45 55°					\x	
28.		adjoining figure	ABIIC	D. The value of	x is:		V	
-01	(A)	80°	, .	A		В		
	(B)	88°		130°				
	(C)	90°	Q	132°				
	(D)	98°		C		D		

4

Vidyamandir Classes | Gurukul for IITJEE & Medical Preparation

39. Amar and Bhavan have a certain amount with them. If Bhavan gives Rs. 20 to Amar, he will have half the amount with Amar. If Amar gives Rs. 40 to Bhavan, he will have half the amount with Bhavan. Find the amount with Bhavan. (A) Rs. 70 **(B)** Rs. 90 **(C)** Rs. 60 **(D)** Rs. 80 40. In an election the supporters of two candidates A and B where taken to polling booth in two different vehicles, capable of carrying 10 and 15 voters respectively. If at least 90 vehicles were required to carry a total of 1200 voters, then find the maximum number of votes by which the election could be won by the Candidate B. 900 600 **(C)** 300 **(D)** 500 **(A) (B)** 41. Krishna and Sudheer have some marbles with them. If Sudheer gives 10 marbles to Krishna, then Krishna will have 40 more marbles than Sudheer. If Sudheer gives 40 marbles to Krishna, Krishna will have 5 times as may marbles as Sudheer. Find the number of marbles with Sudheer. **(A)** 65 **(B)** 55 **(C)** 70 **(D)** 50 42. A goat is tied to a corner of a rectangular plot of dimensions $14m \times 7m$ with a rope 21 m long. It cannot graze inside the plot but can graze outside it as far as it is permitted by the rope. Find the area it can graze (in m^2). (Take $\pi = \frac{22}{7}$) (A) 1104 (B) 1196 (C) 1380 SINCE 19 (D) 1288 In the figure, ABCD is a rectangle with AB = 9 cm and AВ 43. BC = 6 cm. O is the centre of the circle. Then the area of the 24EDICAL shaded region is equal to $(in cm^2)$: 18 (A) **(B)** (DE \ 27 **(C)** D С Any point on *x*-axis is of the form : 44. **(C) (D) (A)** (x, y)**(B)** (0, y)(x, 0)(x, x)The value of $\frac{(55)^3 + (45)^3}{(55)^2 - 55 \times 45 + (45)^2}$ is : 45. (A) 100 **(B) (C)** 125 **(D)** 75 105 **SECTION - III [SCIENCE]** 46. The splash is heard after 4.22 sec after the stone is dropped into a well of depth 78.4 m. The velocity of sound is: **(A)** 342 m/s **(B)** 372 m/s **(C)** 392 m/s **(D)** 356 m/s

47. A man of mass 90 kg is standing in an elevator whose cable broke suddenly. If the elevator falls freely, the force exerted by the floor on the man is:
(A) 90 N
(B) 90 gN
(C) Zero
(D) any negative value

- **48.** Two pieces of metal immersed in a liquid have equal upthrust on them, then:
 - (A) Both pieces must have equal weights (B) Both pieces must have equal densities
 - (C) Both pieces must have equal volume (D) Both are floating to the same depth

49. An electric motor creates a tension of 4500 N in hoisting cable and reels it at the rate of 2 m/s. What is the power of electric motor? **(A)** 15 kW 9 kW **(C)** 225W **(D)** 9000kW **(B)** 50. For the wave shown in figure, the wavelength and frequency, if its speed is 320 m/sec, are: Y 0 x=20cm(A) 80 cm, 40 Hz 8 cm, 400 Hz **(B) (C)** 8 cm, 4000 Hz (**D**) 40 cm, 8000 Hz 51. Three gases A, B and C have the following boiling points respectively -120°, -110°C and -80°C on cooling the gases. Which gas will liquefy first? (A) **(B)** В А Can't be predicted **(C)** С **(D)** Which of the following will decrease the rate of evaporation of water? 52. Increase in temperature of water **(B)** Increase in surface area of water **(A)** Adding common salt to water Increase in wind speed **(C) (D)** Which of the following formula is/are incorrectly matched with the compound? 53. Magnesium phosphate: Mg₃(PO₄)₂ **(I)** Ammonium chloride: NH₄Cl **(II)** Sodium nitrate: NaNO, (III) **(B) (D)** None of these (A) I and III **(C)** Π 54. Which of the following has the maximum number of atoms? (Molecular weight of N = 14g, H = 1g) $100 \text{ g of } N_2$ 100 g of NH_3 (C) 100 g of H₂ $100 \text{ g of } O_2$ (A) **(B) (D)** 55. Which of the following statements is/are incorrect? Tincture of iodine is a solution of iodine in alcohol **(I)** Burning of wood is a chemical change **(II)** Mercury and iodine are liquid at room temperature (III) Ш **(D)** None of these **(A)** Ι **(B) (C)** Π 56. Protein is synthesized by: Ribosomes Golgi Apparatus (C) Plastids **(D)** Mitochondria **(A) (B)** 57. Genes are located on the: Cell membrane **(A)** Nuclear membrane **(B) (C)** Chromosomes **(D)** Mitochondria 58. Phloem in the plants perform the function of: Conduction of food **(B)** Conduction of water (A) Providing water Photosynthesis **(C) (D)**

59. Simple tissues are:

- (A) Parenchyma, Xylem and Collenchyma
- (B) Parenchyma, Collenchyma and Sclerenchyma
- (C) Xylem, Phloem
- (D) Parenchyma, Xylem, Sclerenchyma

60. Bacteria are placed under which kingdom?

	(A)	Protista	(B)	Fungi	(C)	Monera	(D)	Plantae
--	-----	----------	------------	-------	-----	--------	------------	---------

అం అం End of Sample Paper | 3 Year ఆ ఆ ఆ

Answers to Sample Paper | 3 Year

SECTION - I									
1	2	3	4	5	6	7	8	9	10
С	D	D	С	С	С	А	С	D	С
SECTION - II									
11	12	13	14	15	16	17	18	19	20
А	D	В	В	А	A		A	E 1086	С
21	22	23	24	25	26	527 5	28	29	30
A	D	В	A	L A	A	В	P	A	А
31	32	33	34	35	36	37	38	39	40
с	В	В	D	В	А	D	В	D	В
		41	42	43	44	45			
		A	D	A	С	А			
SECTION - III									
46	47	48	49	50	51	52	53	54	55
D	С	С	В	С	С	С	D	С	В
		56	57	58	59	60			
		А	С	А	В	С			

VMC CENTERS ACROSS INDIA

()) www.vidyamandir.com

() facebook.com/VmcLearning () twitter.com/VmcLearning